- #1
QuantumVegan
- 5
- 0
I'm working on a research paper on Quantum Entanglement and came across something I don't understand. (I assume this goes here rather than in the homework forum because it applies to a topic rather than a problem. Sorry if I'm mistaken.) From what I've read, if two electrons are entangled, one will have an up-spin and the other will have a down-spin. However, there can be more than two electrons entangled (scientists have entangled three). With three electrons, there can't be just one with up-spin and one with down-spin, so what happens?
Secondly, what happens if two electrons with the same spin are entangled? For example, two electrons, each with up-spin, are entangled--one should stay up-spin and one should switch to down-spin, correct? Yet if they are entangled and have negligible differences, there is nothing to determine which one switches to down-spin and which one remains up-spin. How does this work?
Sorry if these are stupid questions, I am in 11th grade in high school so I have not yet had any quantum mechanics courses.
Any help is appreciated. Thanks.
Secondly, what happens if two electrons with the same spin are entangled? For example, two electrons, each with up-spin, are entangled--one should stay up-spin and one should switch to down-spin, correct? Yet if they are entangled and have negligible differences, there is nothing to determine which one switches to down-spin and which one remains up-spin. How does this work?
Sorry if these are stupid questions, I am in 11th grade in high school so I have not yet had any quantum mechanics courses.
Any help is appreciated. Thanks.