I Question about Inverse Derivative Hyperbola function

AI Thread Summary
The discussion centers on confusion regarding the application of the hyperbola formula X^2 - Y^2 = c^2 in solving an equation. The user mistakenly squared the Y^2 value too early in their calculations, leading to incorrect results. They recognize the need to square both sides properly to simplify the equation correctly. A suggestion is made to learn calculus fundamentals, such as the chain rule, to improve their mathematical approach. The conversation emphasizes the importance of following logical steps in mathematical problem-solving.
Vividly
Messages
44
Reaction score
0
TL;DR Summary
Question about inverse Tanhx
Im confused about a certain part of solving an equation. So I used the hyerbola formula to find the answer but I think I did the math wrong.
X^2-y^2=c^2
X=1
Y= (2x^5-1)^2
I did the calculations as you can see in the picture but I know I messed up on the square root part. When you square one side you have to square the whole other side.
So Far I got
1^2-((2x^5-1)^2)^2 =c^2
And as you can see in the picture the math is incorrect due to the process that's suppose to be done in math. When I square both sides I get a different answer when I simplify.
As you can see on the paper that where I am stuck because the answer is 5/2x-2x^6
 

Attachments

  • image.jpg
    image.jpg
    34.5 KB · Views: 138
  • image.jpg
    image.jpg
    31.2 KB · Views: 136
Mathematics news on Phys.org
Vividly said:
Summary:: Question about inverse Tanhx

Im confused about a certain part of solving an equation. So I used the hyerbola formula to find the answer but I think I did the math wrong.
X^2-y^2=c^2
X=1
Y= (2x^5-1)^2
I did the calculations as you can see in the picture but I know I messed up on the square root part. When you square one side you have to square the whole other side.
So Far I got
1^2-((2x^5-1)^2)^2 =c^2
And as you can see in the picture the math is incorrect due to the process that's suppose to be done in math. When I square both sides I get a different answer when I simplify.
As you can see on the paper that where I am stuck because the answer is 5/2x-2x^6
As I mentioned on your previous post, it's not possible to keep trying to do calculus this way. Triangles and graphs get you started, but eventually you should learn the chain rule and the algebra of differentiation.

When you go wrong, then you are asking a lot for someone to take the time and effort to analyse this personal and peculiar approach - since no one else does it this way.

Perhaps someone else will have the time to look at this, but my advice is to start doing calculus properly.
 
There are different ways of doing math. As long as you follow the logic you can solve the problem. I do math in a way that I understand. I figured out what I did wrong. I was squaring the y^2 value to early in the problem. I was suppose to do it at the end to eliminate the square root.
 

Attachments

  • image.jpg
    image.jpg
    39.2 KB · Views: 157
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top