Sorry for a naive question.(adsbygoogle = window.adsbygoogle || []).push({});

In EM textbook and QM path integral textbook, the action and Lagrangian in electromagnetic interaction are

S = L dt = e(\phi – A v) dt ---equ.(1)

But in QFT textbook, the action and Lagrangian density are

S = L d^4x = A J d^4x ---equ.(2)

As I understand, in equ.(2), J = \rho U = \rho \gamma V

In which \rho is density, U is the 4-velocity=dx/d\tau, and V is the common velocity=dx/dt, \gamma is \sqrt (1-v^2/c^2).

So equ.(2) will have a factor of \gamma, but equ.(1) does not have.

So where is my mistake?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question about Lagrangian in electromagnetic interaction

**Physics Forums | Science Articles, Homework Help, Discussion**