Undergrad What does V^G mean in linear algebra?

  • Thread starter Thread starter cask1
  • Start date Start date
  • Tags Tags
    Notation
Click For Summary
The notation V^G in linear algebra refers to the set of elements in the vector space V that are invariant under the action of the group G. This means that V^G consists of those elements that remain unchanged when any group element acts on them. The discussion clarifies that while X^Y typically denotes functions from Y to X, in this context, it specifically pertains to invariant elements under group action. It also emphasizes that the AI summary incorrectly conflates V^G with V^*, leading to misleading conclusions. Understanding V^G is crucial for studying linear algebraic groups and their properties.
cask1
Messages
8
Reaction score
0
TL;DR
Hi. Newbee question. What does the notation V^G mean where V is a vector space and G is a group? I found it in: A linear algebraic group G is called linearly reductive if for every rational representation V and every v in V^G \ {0}, there exists a linear invariant function f in (V^*)^G such that f(v)<>0. I can't find a definition of the notation using google. Thanks.
Hi. Newbee question. What does the notation V^G mean where V is a vector space and G is a group? I found it in: A linear algebraic group G is called linearly reductive if for every rational representation V and every v in V^G \ {0}, there exists a linear invariant function f in (V^*)^G such that f(v)<>0. I can't find a definition of the notation using google. Thanks.
 
Physics news on Phys.org
Normally for sets ##X## and ##Y##, ##X^Y## is the set of functions from ##Y## to ##X##. In a context like this, it's often meant to be limited to functions of the desired type, e.g. only representations.

That doesn't really make sense here, since a representation is a map ##G\to GL(V)##, not a map from ##G## to ##V##.
 
When a group ##G## acts on a set ##X## (in your case ##V##), sometimes one writes ##X^G## for the set of invariant elements, that is, the elements of ##X## that are fixed by all group elements. Note that if ##G## acts linearly on ##V##, then it also does on ##V^*##, so it makes sense to write ##(V^*)^G## in your example.
 
Last edited:
The AI summary explanation that ends this thread, visible only when not logged in, incorrectly equates V^G with V ^*, and hence virtually every statement in it is false.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
905
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K