MHB Question from Jesse about Gaussian Elimination and LU factorisation.

AI Thread Summary
The discussion focuses on using Gaussian Elimination to perform LU factorization on a given matrix equation. The process involves systematically eliminating terms below the main diagonal to form lower and upper triangular matrices, L and U, respectively. The resulting system is simplified into two equations, Lg = b and Ux = g, allowing for easier computation of the solution. The final values obtained for g and x are g1 = 7, g2 = -4, g3 = 6, g4 = 2, x1 = -2, x2 = 3, x3 = 5, and x4 = -1. The detailed breakdown illustrates the effectiveness of Gaussian Elimination in solving linear systems.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5370

This system can be written as a matrix equation $\displaystyle \begin{align*} A\,\mathbf{x} = \mathbf{b} \end{align*}$ as

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}2 & 4 & \phantom{-}0 & 1 \\ \phantom{-}2 & 8 & -2 & 7 \\ -2 & 2 & -2 & 7 \\ \phantom{-}0 & 8 & -5 & 11 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ \phantom{-}3 \\ -7 \\ -12 \end{matrix} \right] \end{align*}$

To get the LU factorisation we need to use Gaussian Elimination on the coefficient matrix...

$\displaystyle \begin{align*} A = \left[ \begin{matrix} \phantom{-}2 & 4 & \phantom{-}0 & 1 \\ \phantom{-}2 & 8 & -2 & 7 \\ -2 & 2 & -2 & 7 \\ \phantom{-}0 & 8 & -5 & 11 \end{matrix} \right] \end{align*}$

To eliminate the terms under the main diagonal in the first column, we will apply Row 2 - Row 1 to Row 3 and Row 3 - (-1)Row 1 to Row 3. As we are eliminating the elements $\displaystyle \begin{align*} a_{2,1} \end{align*}$ and $\displaystyle \begin{align*} a_{3, 1} \end{align*}$, that means in our lower triangular matrix, which has 1 as all the elements on the main diagonal and the multipliers of the rows as its coefficients under the main diagonal, will have $\displaystyle \begin{align*} \mathcal{l}_{2,1} = 1 \end{align*}$ and $\displaystyle \begin{align*} \mathcal{l}_{3,1} = -1 \end{align*}$. Since we didn't have to do anything with element $\displaystyle \begin{align*} a_{4,1} \end{align*}$ that means the multiplier is 0, and thus $\displaystyle \begin{align*} \mathcal{l}_{4,1} = 0 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & 1 \\ 0 & 4 & -2 & 6 \\ 0 & 6 & -2 & 8 \\ 0 & 8 & -5 & 11 \end{matrix} \right] \end{align*}$

To eliminate the terms under the main diagonal in the second column, we will apply Row 3 - (3/2)Row 2 to Row 3 and Row 4 - 2 Row 2 to Row 4. As we are eliminating the elements $\displaystyle \begin{align*} a_{3,2} \end{align*}$ and $\displaystyle \begin{align*} a_{4,2} \end{align*}$, this means that $\displaystyle \begin{align*} \mathcal{l}_{3,2} = \frac{3}{2} \end{align*}$ and $\displaystyle \begin{align*} \mathcal{l}_{4,2} = 2 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & -1 & \phantom{-}1 \end{matrix} \right] \end{align*}$

To eliminate the term under the main diagonal in the third column, we will apply Row 4 - (-1)Row 3 to Row 4. As we are eliminating the element $\displaystyle \begin{align*} a_{4,3} \end{align*}$ that means that $\displaystyle \begin{align*} \mathcal{l}_{4,3} = -1 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \end{align*}$

So we have found that our lower triangular matrix $\displaystyle \begin{align*} L = \left[ \begin{matrix} \phantom{-}1 & 0 & \phantom{-}0 & 0 \\ \phantom{-}1 & 1 & \phantom{-}0 & 0 \\ -1 & \frac{3}{2} & \phantom{-}1 & 0 \\ \phantom{-}0 & 2 & -1 & 1 \end{matrix} \right] \end{align*}$ and our upper triangular matrix $\displaystyle \begin{align*} U = \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \end{align*}$.

This reduces the system to $\displaystyle \begin{align*} L\,U\,\mathbf{x} = \mathbf{b} \end{align*}$. Notice that $\displaystyle \begin{align*} U\,\mathbf{x} \end{align*}$ is a column matrix when multiplied out, which we can call $\displaystyle \begin{align*} \mathbf{g} \end{align*}$. This now reduces the system to two simpler matrix equations, as the coefficient matrices are diagonal. They are $\displaystyle \begin{align*} L\,\mathbf{g} = \mathbf{b} \end{align*}$ and $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$.

Solving for $\displaystyle \begin{align*} \mathbf{g} \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 & 0 & \phantom{-}0 & 0 \\ \phantom{-}1 & 1 & \phantom{-}0 & 0 \\ -1 & \frac{3}{2} & \phantom{-}1 & 0 \\ \phantom{-}0 & 2 & -1 & 1 \end{matrix} \right] \left[ \begin{matrix} g_1 \\ g_2 \\ g_3 \\ g_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ \phantom{-}3 \\ -7 \\ -12 \end{matrix} \right] \end{align*}$

We can see $\displaystyle \begin{align*} g_1 = 7 \end{align*}$. Forward substituting gives

$\displaystyle \begin{align*} g_1 + g_2 &= 3 \\ 7 + g_2 &= 3 \\ g_2 &= -4 \end{align*}$

Forward substituting gives

$\displaystyle \begin{align*} -g_1 + \frac{3}{2}\,g_2 + g_3 &= -7 \\ -7 - 6 + g_3 &= -7 \\ g_3 &= 6 \end{align*}$

Forward substituting gives

$\displaystyle \begin{align*} 2\,g_2 - g_3 + g_4 &= -12 \\ -8 - 6 + g_4 &= -12 \\ -14 + g_4 &= -12 \\ g_4 &= 2 \end{align*}$

Now solving $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$ for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ gives

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ -4 \\ \phantom{-}6 \\ \phantom{-}2 \end{matrix} \right] \end{align*}$

We can see that

$\displaystyle \begin{align*} -2x_4 &= 2 \\ x_4 &= -1 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} x_3 - x_4 &= 6 \\ x_3 + 1 &= 6 \\ x_3 &= 5 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} 4\,x_2 - 2\,x_3 + 6\,x_4 &= -4 \\ 4\,x_2 - 10 - 6 &= -4 \\ 4\,x_2 &= 12 \\ x_2 &= 3 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} 2\,x_1 + 4\,x_2 + x_4 &= 7 \\ 2\,x_1 + 12 - 1 &= 7 \\ 2\,x_1 &= -4 \\ x_1 &= -2 \end{align*}$

So to answer your question we have $\displaystyle \begin{align*} g_1 = 7 , \, g_2 = -4 , \, g_3 = 6 , \, g_4 = 2, \, x_1 = -2 , \, x_2 = 3 , \, x_3 = 5 \end{align*}$ and $\displaystyle \begin{align*} x_4 = -1 \end{align*}$.
 

Attachments

  • gelu.jpg
    gelu.jpg
    67 KB · Views: 100
Mathematics news on Phys.org


Thank you for the detailed explanation, it was very helpful! It's interesting to see how the Gaussian Elimination process can be broken down into smaller, simpler equations.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top