MHB Question from Jesse about Gaussian Elimination and LU factorisation.

AI Thread Summary
The discussion focuses on using Gaussian Elimination to perform LU factorization on a given matrix equation. The process involves systematically eliminating terms below the main diagonal to form lower and upper triangular matrices, L and U, respectively. The resulting system is simplified into two equations, Lg = b and Ux = g, allowing for easier computation of the solution. The final values obtained for g and x are g1 = 7, g2 = -4, g3 = 6, g4 = 2, x1 = -2, x2 = 3, x3 = 5, and x4 = -1. The detailed breakdown illustrates the effectiveness of Gaussian Elimination in solving linear systems.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5370

This system can be written as a matrix equation $\displaystyle \begin{align*} A\,\mathbf{x} = \mathbf{b} \end{align*}$ as

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}2 & 4 & \phantom{-}0 & 1 \\ \phantom{-}2 & 8 & -2 & 7 \\ -2 & 2 & -2 & 7 \\ \phantom{-}0 & 8 & -5 & 11 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ \phantom{-}3 \\ -7 \\ -12 \end{matrix} \right] \end{align*}$

To get the LU factorisation we need to use Gaussian Elimination on the coefficient matrix...

$\displaystyle \begin{align*} A = \left[ \begin{matrix} \phantom{-}2 & 4 & \phantom{-}0 & 1 \\ \phantom{-}2 & 8 & -2 & 7 \\ -2 & 2 & -2 & 7 \\ \phantom{-}0 & 8 & -5 & 11 \end{matrix} \right] \end{align*}$

To eliminate the terms under the main diagonal in the first column, we will apply Row 2 - Row 1 to Row 3 and Row 3 - (-1)Row 1 to Row 3. As we are eliminating the elements $\displaystyle \begin{align*} a_{2,1} \end{align*}$ and $\displaystyle \begin{align*} a_{3, 1} \end{align*}$, that means in our lower triangular matrix, which has 1 as all the elements on the main diagonal and the multipliers of the rows as its coefficients under the main diagonal, will have $\displaystyle \begin{align*} \mathcal{l}_{2,1} = 1 \end{align*}$ and $\displaystyle \begin{align*} \mathcal{l}_{3,1} = -1 \end{align*}$. Since we didn't have to do anything with element $\displaystyle \begin{align*} a_{4,1} \end{align*}$ that means the multiplier is 0, and thus $\displaystyle \begin{align*} \mathcal{l}_{4,1} = 0 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & 1 \\ 0 & 4 & -2 & 6 \\ 0 & 6 & -2 & 8 \\ 0 & 8 & -5 & 11 \end{matrix} \right] \end{align*}$

To eliminate the terms under the main diagonal in the second column, we will apply Row 3 - (3/2)Row 2 to Row 3 and Row 4 - 2 Row 2 to Row 4. As we are eliminating the elements $\displaystyle \begin{align*} a_{3,2} \end{align*}$ and $\displaystyle \begin{align*} a_{4,2} \end{align*}$, this means that $\displaystyle \begin{align*} \mathcal{l}_{3,2} = \frac{3}{2} \end{align*}$ and $\displaystyle \begin{align*} \mathcal{l}_{4,2} = 2 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & -1 & \phantom{-}1 \end{matrix} \right] \end{align*}$

To eliminate the term under the main diagonal in the third column, we will apply Row 4 - (-1)Row 3 to Row 4. As we are eliminating the element $\displaystyle \begin{align*} a_{4,3} \end{align*}$ that means that $\displaystyle \begin{align*} \mathcal{l}_{4,3} = -1 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \end{align*}$

So we have found that our lower triangular matrix $\displaystyle \begin{align*} L = \left[ \begin{matrix} \phantom{-}1 & 0 & \phantom{-}0 & 0 \\ \phantom{-}1 & 1 & \phantom{-}0 & 0 \\ -1 & \frac{3}{2} & \phantom{-}1 & 0 \\ \phantom{-}0 & 2 & -1 & 1 \end{matrix} \right] \end{align*}$ and our upper triangular matrix $\displaystyle \begin{align*} U = \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \end{align*}$.

This reduces the system to $\displaystyle \begin{align*} L\,U\,\mathbf{x} = \mathbf{b} \end{align*}$. Notice that $\displaystyle \begin{align*} U\,\mathbf{x} \end{align*}$ is a column matrix when multiplied out, which we can call $\displaystyle \begin{align*} \mathbf{g} \end{align*}$. This now reduces the system to two simpler matrix equations, as the coefficient matrices are diagonal. They are $\displaystyle \begin{align*} L\,\mathbf{g} = \mathbf{b} \end{align*}$ and $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$.

Solving for $\displaystyle \begin{align*} \mathbf{g} \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 & 0 & \phantom{-}0 & 0 \\ \phantom{-}1 & 1 & \phantom{-}0 & 0 \\ -1 & \frac{3}{2} & \phantom{-}1 & 0 \\ \phantom{-}0 & 2 & -1 & 1 \end{matrix} \right] \left[ \begin{matrix} g_1 \\ g_2 \\ g_3 \\ g_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ \phantom{-}3 \\ -7 \\ -12 \end{matrix} \right] \end{align*}$

We can see $\displaystyle \begin{align*} g_1 = 7 \end{align*}$. Forward substituting gives

$\displaystyle \begin{align*} g_1 + g_2 &= 3 \\ 7 + g_2 &= 3 \\ g_2 &= -4 \end{align*}$

Forward substituting gives

$\displaystyle \begin{align*} -g_1 + \frac{3}{2}\,g_2 + g_3 &= -7 \\ -7 - 6 + g_3 &= -7 \\ g_3 &= 6 \end{align*}$

Forward substituting gives

$\displaystyle \begin{align*} 2\,g_2 - g_3 + g_4 &= -12 \\ -8 - 6 + g_4 &= -12 \\ -14 + g_4 &= -12 \\ g_4 &= 2 \end{align*}$

Now solving $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$ for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ gives

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ -4 \\ \phantom{-}6 \\ \phantom{-}2 \end{matrix} \right] \end{align*}$

We can see that

$\displaystyle \begin{align*} -2x_4 &= 2 \\ x_4 &= -1 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} x_3 - x_4 &= 6 \\ x_3 + 1 &= 6 \\ x_3 &= 5 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} 4\,x_2 - 2\,x_3 + 6\,x_4 &= -4 \\ 4\,x_2 - 10 - 6 &= -4 \\ 4\,x_2 &= 12 \\ x_2 &= 3 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} 2\,x_1 + 4\,x_2 + x_4 &= 7 \\ 2\,x_1 + 12 - 1 &= 7 \\ 2\,x_1 &= -4 \\ x_1 &= -2 \end{align*}$

So to answer your question we have $\displaystyle \begin{align*} g_1 = 7 , \, g_2 = -4 , \, g_3 = 6 , \, g_4 = 2, \, x_1 = -2 , \, x_2 = 3 , \, x_3 = 5 \end{align*}$ and $\displaystyle \begin{align*} x_4 = -1 \end{align*}$.
 

Attachments

  • gelu.jpg
    gelu.jpg
    67 KB · Views: 102
Mathematics news on Phys.org


Thank you for the detailed explanation, it was very helpful! It's interesting to see how the Gaussian Elimination process can be broken down into smaller, simpler equations.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top