MHB Question from Jesse about Gaussian Elimination and LU factorisation.

Click For Summary
The discussion focuses on using Gaussian Elimination to perform LU factorization on a given matrix equation. The process involves systematically eliminating terms below the main diagonal to form lower and upper triangular matrices, L and U, respectively. The resulting system is simplified into two equations, Lg = b and Ux = g, allowing for easier computation of the solution. The final values obtained for g and x are g1 = 7, g2 = -4, g3 = 6, g4 = 2, x1 = -2, x2 = 3, x3 = 5, and x4 = -1. The detailed breakdown illustrates the effectiveness of Gaussian Elimination in solving linear systems.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5370

This system can be written as a matrix equation $\displaystyle \begin{align*} A\,\mathbf{x} = \mathbf{b} \end{align*}$ as

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}2 & 4 & \phantom{-}0 & 1 \\ \phantom{-}2 & 8 & -2 & 7 \\ -2 & 2 & -2 & 7 \\ \phantom{-}0 & 8 & -5 & 11 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ \phantom{-}3 \\ -7 \\ -12 \end{matrix} \right] \end{align*}$

To get the LU factorisation we need to use Gaussian Elimination on the coefficient matrix...

$\displaystyle \begin{align*} A = \left[ \begin{matrix} \phantom{-}2 & 4 & \phantom{-}0 & 1 \\ \phantom{-}2 & 8 & -2 & 7 \\ -2 & 2 & -2 & 7 \\ \phantom{-}0 & 8 & -5 & 11 \end{matrix} \right] \end{align*}$

To eliminate the terms under the main diagonal in the first column, we will apply Row 2 - Row 1 to Row 3 and Row 3 - (-1)Row 1 to Row 3. As we are eliminating the elements $\displaystyle \begin{align*} a_{2,1} \end{align*}$ and $\displaystyle \begin{align*} a_{3, 1} \end{align*}$, that means in our lower triangular matrix, which has 1 as all the elements on the main diagonal and the multipliers of the rows as its coefficients under the main diagonal, will have $\displaystyle \begin{align*} \mathcal{l}_{2,1} = 1 \end{align*}$ and $\displaystyle \begin{align*} \mathcal{l}_{3,1} = -1 \end{align*}$. Since we didn't have to do anything with element $\displaystyle \begin{align*} a_{4,1} \end{align*}$ that means the multiplier is 0, and thus $\displaystyle \begin{align*} \mathcal{l}_{4,1} = 0 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & 1 \\ 0 & 4 & -2 & 6 \\ 0 & 6 & -2 & 8 \\ 0 & 8 & -5 & 11 \end{matrix} \right] \end{align*}$

To eliminate the terms under the main diagonal in the second column, we will apply Row 3 - (3/2)Row 2 to Row 3 and Row 4 - 2 Row 2 to Row 4. As we are eliminating the elements $\displaystyle \begin{align*} a_{3,2} \end{align*}$ and $\displaystyle \begin{align*} a_{4,2} \end{align*}$, this means that $\displaystyle \begin{align*} \mathcal{l}_{3,2} = \frac{3}{2} \end{align*}$ and $\displaystyle \begin{align*} \mathcal{l}_{4,2} = 2 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & -1 & \phantom{-}1 \end{matrix} \right] \end{align*}$

To eliminate the term under the main diagonal in the third column, we will apply Row 4 - (-1)Row 3 to Row 4. As we are eliminating the element $\displaystyle \begin{align*} a_{4,3} \end{align*}$ that means that $\displaystyle \begin{align*} \mathcal{l}_{4,3} = -1 \end{align*}$. A has now become

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \end{align*}$

So we have found that our lower triangular matrix $\displaystyle \begin{align*} L = \left[ \begin{matrix} \phantom{-}1 & 0 & \phantom{-}0 & 0 \\ \phantom{-}1 & 1 & \phantom{-}0 & 0 \\ -1 & \frac{3}{2} & \phantom{-}1 & 0 \\ \phantom{-}0 & 2 & -1 & 1 \end{matrix} \right] \end{align*}$ and our upper triangular matrix $\displaystyle \begin{align*} U = \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \end{align*}$.

This reduces the system to $\displaystyle \begin{align*} L\,U\,\mathbf{x} = \mathbf{b} \end{align*}$. Notice that $\displaystyle \begin{align*} U\,\mathbf{x} \end{align*}$ is a column matrix when multiplied out, which we can call $\displaystyle \begin{align*} \mathbf{g} \end{align*}$. This now reduces the system to two simpler matrix equations, as the coefficient matrices are diagonal. They are $\displaystyle \begin{align*} L\,\mathbf{g} = \mathbf{b} \end{align*}$ and $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$.

Solving for $\displaystyle \begin{align*} \mathbf{g} \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 & 0 & \phantom{-}0 & 0 \\ \phantom{-}1 & 1 & \phantom{-}0 & 0 \\ -1 & \frac{3}{2} & \phantom{-}1 & 0 \\ \phantom{-}0 & 2 & -1 & 1 \end{matrix} \right] \left[ \begin{matrix} g_1 \\ g_2 \\ g_3 \\ g_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ \phantom{-}3 \\ -7 \\ -12 \end{matrix} \right] \end{align*}$

We can see $\displaystyle \begin{align*} g_1 = 7 \end{align*}$. Forward substituting gives

$\displaystyle \begin{align*} g_1 + g_2 &= 3 \\ 7 + g_2 &= 3 \\ g_2 &= -4 \end{align*}$

Forward substituting gives

$\displaystyle \begin{align*} -g_1 + \frac{3}{2}\,g_2 + g_3 &= -7 \\ -7 - 6 + g_3 &= -7 \\ g_3 &= 6 \end{align*}$

Forward substituting gives

$\displaystyle \begin{align*} 2\,g_2 - g_3 + g_4 &= -12 \\ -8 - 6 + g_4 &= -12 \\ -14 + g_4 &= -12 \\ g_4 &= 2 \end{align*}$

Now solving $\displaystyle \begin{align*} U\,\mathbf{x} = \mathbf{g} \end{align*}$ for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ gives

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & 4 & \phantom{-}0 & \phantom{-}1 \\ 0 & 4 & -2 & \phantom{-}6 \\ 0 & 0 & \phantom{-}1 & -1 \\ 0 & 0 & \phantom{-}0 & -2 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{matrix} \right] = \left[ \begin{matrix} \phantom{-}7 \\ -4 \\ \phantom{-}6 \\ \phantom{-}2 \end{matrix} \right] \end{align*}$

We can see that

$\displaystyle \begin{align*} -2x_4 &= 2 \\ x_4 &= -1 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} x_3 - x_4 &= 6 \\ x_3 + 1 &= 6 \\ x_3 &= 5 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} 4\,x_2 - 2\,x_3 + 6\,x_4 &= -4 \\ 4\,x_2 - 10 - 6 &= -4 \\ 4\,x_2 &= 12 \\ x_2 &= 3 \end{align*}$

Back substituting gives

$\displaystyle \begin{align*} 2\,x_1 + 4\,x_2 + x_4 &= 7 \\ 2\,x_1 + 12 - 1 &= 7 \\ 2\,x_1 &= -4 \\ x_1 &= -2 \end{align*}$

So to answer your question we have $\displaystyle \begin{align*} g_1 = 7 , \, g_2 = -4 , \, g_3 = 6 , \, g_4 = 2, \, x_1 = -2 , \, x_2 = 3 , \, x_3 = 5 \end{align*}$ and $\displaystyle \begin{align*} x_4 = -1 \end{align*}$.
 

Attachments

  • gelu.jpg
    gelu.jpg
    67 KB · Views: 106
Mathematics news on Phys.org


Thank you for the detailed explanation, it was very helpful! It's interesting to see how the Gaussian Elimination process can be broken down into smaller, simpler equations.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K