- #1

- 20

- 0

## Main Question or Discussion Point

Hi,

In a euclidean space X with two subsets E and F, the subset E+F is defined as the collection of all x+y, where x E and y F. “+” denotes the addition in the euclidean space. Prove that if E and F are open, then E + F is open.

I'd really appreciate your help. Thanks so much!

In a euclidean space X with two subsets E and F, the subset E+F is defined as the collection of all x+y, where x E and y F. “+” denotes the addition in the euclidean space. Prove that if E and F are open, then E + F is open.

I'd really appreciate your help. Thanks so much!

Last edited: