gptejms said:
Again I take the example of an electron approaching a nucleus.
Ok, it is an interesting example.
Take for the moment the electron to be a classical particle.Depending on its speed,it should either fall into a circular orbit(rather spiral into the nucleus) or be scattered off.
Let us more say that the speed is fixed, and that we work with the impact parameter b (the distance between the straight line on which the incoming electron moves, and the nucleus) in the classical case.
Indeed, for a large impact parameter, the particle almost goes straight through, while for smaller and smaller impact parameters, first the particle track bends lightly, a bit and finally, for small enough values, the particle scatters under large angles. Let us not consider the case of capture. The nucleus will undergo the appropriate recoil for momentum to be conserved.
In a quantum scenario,if it is scattered off, it doesen't remain the same plane wave--its wavevector changes.If,as you say, the plane wave remains as it is,the electron should merrily pass on away from the nucleus with the same momentum and in the same direction as if nothing has happened--obviously this is not correct.In the case the electron gets trapped by the nucleus,the wavefunction again changes.
In a semi-quantum scenario (incoming particle quantum, nucleus classical), if the particle's momentum is well known, it is an incoming plane wave, and hence it "contains" all impact parameters at once. The nucleus being considered classical, we can replace it by a potential in the electron's schroedinger equation. We now solve that Schroedinger equation, and out will come a rather complicated looking wavefront. If we apply the Born rule to it (meaning, we make a transition to classical), it gives us the probability of the particle to scatter under a certain angle. From that *classical* result, we can then find the corresponding probability of the nucleus to recoil with a certain momentum.
In the full quantum scenario, the initial state of the nucleus-electron system is a product state |nucleus> |electron> in which the nucleus corresponds to some localized lumpy wavefunction, and the electron an incoming plane wave. Now, there is no external potential, but an interaction term in the hamiltonian over the hilbert space of the two particles, which describes their Coulomb interaction. If we apply this hamiltonian's time evolution to
|nucleus> |electron>, this product state will evolve in an entangled state, which I intuitively think will take on something like:
|psi_final> = Integral db f(b) |nucleus-plane-wave-p(b)> |electron-plane-wave-p(b)>
Here, f(b) is some complex number as a function of a variable which I call b, because it more or less corresponds to some impact parameter, and the two states correspond to a product state of a plane wave with momentum p(b) for the nucleus and a plane wave with momentum - p(b) for the electron.
I'm not sure about this, I just guess it: it is my guess for the form of the solution of the schroedinger equation (in Schmidt decomposition).
So we end up with a global wavefunction for the nucleus and the electron, which is not a product state. If we now apply the Born rule to this system, measuring both momenta of nucleus and electron, we notice several things:
1) there is a very strong correlation between the momentum of the electron and the momentum of the nucleus (they are exactly opposite). That's what you obtained classically by imposing momentum conservation, but it will simply come out of the Schroedinger equation.
2) the probability distribution of the momenta of the electron-nucleus system will be VERY CLOSE to the probability distribution of the semiclassically obtained potential-scattering solution, where the nucleus was replaced by a potential.
I didn't claim that the wave function of the electron had to remain "as if nothing happened" ; after all there is an interaction with a nucleus ; and this entangles both wavefunctions, and transforms them unitarily. But you see again that no SINGLE scattering angle comes out of this: all angles are realized (that is: there is a term in the final wavefunction corresponding to each possible scattering angle for the electron) and to each angle for the electron, corresponds the matched angle for the nucleus.
Let's however remain focused on the central issue.I stated that when you 'observe' a particle you are just observing a shrunk form of the wavefunction--the particle is still quantum and has a delta x and a delta p.The only thing a measurement does is to give you this shrunk form which comes out very well from quantum mechanics itself.Need to see some comments on this.
If you mean that you got now entangled with that "shrunk part" (which is just a term in the overall wavefunction), then yes, I agree of course!
If you say that quantum theory by itself unitarily shrunk the wavefunction, I'm telling you that that is mathematically impossible for a unitary operator.
cheers,
Patrick.