We all know from time-independent perturbation theory that if we have an atom in ground state [0>, and when a time-independent perturbation acts on it, the energy of the ground state gets shifted and the ground state wave function also gets modified. Using Time-independent Schroedinger eq.,(adsbygoogle = window.adsbygoogle || []).push({});

[H0 + lambda . V] [0> = [E0] [0>, where V is the perturbation hamiltonian.

Now we expand E0 as E0 = E0(0) + lambda . E0(1) + lambda^2. E0(2) +...

and [0> as [0> = [0>(0) + lambda. [0>(1) + lambda^2. [0>(2) + ...

Then we compare powers of lambda, left multiply with <0] to get the energy corrections and so on.

My question is, is the average energy of the atom E0 = E0(0) + E0(1) + E0(2) + ....

or is it [<0](0) + <0](1) + <0](2) + ....] [ H0 + lambda V] [[0>(0) + [0>(1) + [0>(2) + ....]

Which one is it? They give different result.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question on Time-independent perturbation theory: I am confused

**Physics Forums | Science Articles, Homework Help, Discussion**