I have a question on the integration part of the Variation of Parameters. Given .[tex]y''+P(x)y'+Q(x)y=f(x)[/tex](adsbygoogle = window.adsbygoogle || []).push({});

The associate homogeneous solution .[tex] y_c=c_1y_1 + c_2y_2[/tex].

The particular solution .[tex] y_p=u_1y_1 + c_2y_2[/tex].

[tex]u'_1 = -\frac{W_1}{W} = -\frac{y_2f(x)}{W} [/tex]

This is where I have question. Some books use indefinite integral with the integration constant equal 0.

[tex]u_1= -\int \frac{y_2f(x)}{W}dx[/tex]

But other books gave:

[tex]u_1= -\int_{x_0}^x \frac{y_2f(s)}{W}ds[/tex]

Where [tex]x_0[/tex] is any number in I.

None of the books explain this. Can anyone explain to me about this?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question on Variation of Parameters

**Physics Forums | Science Articles, Homework Help, Discussion**