Question regarding the Pauli Exclusion Principle?

Click For Summary
The discussion centers on the Pauli Exclusion Principle and its application to protons, which are identified as spin 1/2 fermions. It is clarified that while protons in a nucleus are densely packed, they can still occupy different quantum states due to variations in quantum numbers, such as spin direction and energy levels. The principle ensures that no two protons can have identical quantum states, preventing them from "disappearing" even when pushed together. Instead, they occupy higher energy states when forced into the same spatial region. The conversation concludes that the vastness of the universe allows for protons to maintain distinct quantum states despite their proximity.
zeromodz
Messages
244
Reaction score
0
Okay, I think everyone here knows what the principle states, so I am not even going over that. Is a proton not a fermion with is +1/2 spin? It has an half integral, hence it must be. However, how is this possible for a proton to be fermion when elements like gold have a lot of protons in the nucleus.

These protons are pushed together by the atomic force, why don't they disappear because they have asymmetrical wave functions, hence they should cancel out?
 
Physics news on Phys.org
The Pauli Exclusion Principle states that no two fermions can have the same quantum state. Quantum state meaning the assortment of quantum numbers that the wave function has in order to describe the system. Sure two protons can have the same total spin, but other things like their spin direction, i.e along the z-axis or the x-axis, or their principal quantum number ,which is their energy state, cannot be the same.

Anyway, yes protons and neutrons are spin 1/2 fermions that do obey the Pauli Exclusion Principle. Just with different quantum numbers other than total spin.

I hoped this helped
 
Easy. They're not in the same place or state.

If you were to push the nucleons together so they occupied the same space, then the Pauli principle would not lead to them 'disappearing'. (The fact that the wave function 'disappears' means it's an invalid wave function. It's not a solution to the S.E. It doesn't happen.) What happens if they're pushed into the same space is that they're then forced to occupy different (higher) energy states.

This manifests itself as http://en.wikipedia.org/wiki/Electron_degeneracy_pressure" . Which is what keeps neutron stars from collapsing in on themselves.
 
Last edited by a moderator:
Okay, I guess you guys answered it, but don't you think your pushing when you say out of all the atoms in the universe, every single proton has a different quantum state?
 
zeromodz said:
Okay, I guess you guys answered it, but don't you think your pushing when you say out of all the atoms in the universe, every single proton has a different quantum state?

No, because protons that occupy different positions are not in the same state so the EP does not apply; and the universe is a big place with plenty of space.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K