MHB Question related to inverse sine functions

Click For Summary
SUMMARY

The discussion centers on the evaluation of the inverse sine function, specifically the discrepancies in results from two cases involving the expression sin-1(–1/2) – sin-1(–1). Case 1 yields –π/3, while Case 2 results in π/3. The key to understanding these differences lies in the restricted domain of the inverse sine function, which is defined as –π/2 ≤ arcsin(x) ≤ π/2. The correct approach requires adherence to this domain restriction, which was overlooked in the initial evaluations.

PREREQUISITES
  • Understanding of inverse trigonometric functions
  • Familiarity with the sine function and its properties
  • Knowledge of radians and their representation
  • Comprehension of function domains and ranges
NEXT STEPS
  • Study the properties of inverse trigonometric functions, focusing on arcsin
  • Learn about the restrictions on the domains of trigonometric functions
  • Explore the concept of one-to-one functions in relation to inverse functions
  • Practice evaluating inverse sine functions with various inputs
USEFUL FOR

Mathematics students, educators, and anyone seeking to deepen their understanding of trigonometric functions and their inverses.

gsn57iaf
Messages
2
Reaction score
0
Please guide why answers are different in following
two cases and which one is correct?
Case 1. sin-1 ( – 1/2 ) – sin-1 (– 1) = 7π/6 – 3π/2 = – π/3
Case 2. sin-1 ( – 1/2 ) – sin-1 (– 1)
= – sin-1 ( 1/2 ) + sin-1 (1)

= – π/6 + π/2 = π/3
 
Mathematics news on Phys.org
gsn57iaf said:
Please guide why answers are different in following
two cases and which one is correct?
Case 1. sin-1 ( – 1/2 ) – sin-1 (– 1) = 7π/6 – 3π/2 = – π/3
Case 2. sin-1 ( – 1/2 ) – sin-1 (– 1)
= – sin-1 ( 1/2 ) + sin-1 (1)

= – π/6 + π/2 = π/3

In order to have an inverse function, a function needs to be one-to-one on its domain. As $\displaystyle \begin{align*} y = \sin{(x)} \end{align*}$ is not, its domain is restricted. By convention, the domain chosen is $\displaystyle \begin{align*} -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \end{align*}$. That means that the inverse sine function is defined to give an output restricted to $\displaystyle \begin{align*} -\frac{\pi}{2} \leq \arcsin{(x)} \leq \frac{\pi}{2} \end{align*}$. So with this knowledge, which one do you think gives the correct answer?
 
Prove It said:
In order to have an inverse function, a function needs to be one-to-one on its domain. As $\displaystyle \begin{align*} y = \sin{(x)} \end{align*}$ is not, its domain is restricted. By convention, the domain chosen is $\displaystyle \begin{align*} -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \end{align*}$. That means that the inverse sine function is defined to give an output restricted to $\displaystyle \begin{align*} -\frac{\pi}{2} \leq \arcsin{(x)} \leq \frac{\pi}{2} \end{align*}$. So with this knowledge, which one do you think gives the correct answer?

Thanks sir. The key $\displaystyle \begin{align*} -\frac{\pi}{2} \leq \arcsin{(x)} \leq \frac{\pi}{2} \end{align*}$ I ignored in search of answer.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K