MHB Questions about sets and subsets

  • Thread starter Thread starter shle
  • Start date Start date
  • Tags Tags
    Sets Subsets
shle
Messages
4
Reaction score
0
Hi, the question goes as follows:

Given two subsets X and Y of a universal set U, prove that: (refer to picture)

I'm having particular trouble on D and E, if anyone can clear this up or provide some clarification for me that would be appreciated! I know a venn diagram might not be possible here so just an explanation is ok

Thank you!​
 

Attachments

  • Section218.jpg
    Section218.jpg
    72.5 KB · Views: 73
Mathematics news on Phys.org
shle said:
Hi, the question goes as follows:

Given two subsets X and Y of a universal set U, prove that: (refer to picture)

I'm having particular trouble on D and E, if anyone can clear this up or provide some clarification for me that would be appreciated! I know a venn diagram might not be possible here so just an explanation is ok

Thank you!​

d) Show that \( X\subseteq Y\) implies \(\overline{Y} \subseteq \overline{X}\)

Other than the Venn diagram where the region representing \(X\) is inside that representin \(Y\) so that the coplement of \(Y\) is contained within the complement of \(X\) (You are strongly recomended to draw the diagram), Consider any \(z \not\in Y\), then it is in \(\overline{Y}\), but because \( X\subseteq Y\) it is also not in \(X\), so is in \(\overline{X}\), which proves the result.

CB
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top