I Questions about SMT logic solvers

  • I
  • Thread starter Thread starter olgerm
  • Start date Start date
  • Tags Tags
    Logic
olgerm
Gold Member
Messages
532
Reaction score
35
Are smt-solvers (like z3) theoretically able to (always correctly) check consistency of any 1.-order logic formula?
Does it follow from The undecidability of first order logic, that an algorithm, that could check consistency of any 1.-order logic formula, does not exist?
How does the algorithm of work in details? (link to explanation)
Are there any algorithms that could check consistency of any 2.-order logic formula?
Does Gödels 2. incompleteness theorem claim, that such algortihm, that could check consistency of any 2.-order logic formula, does not exist.
Are there any computerprograms that could check consistency of any 2.-order logic formula?

To explain what I mean by 1.-order logic formula I will write here a few examples:
  • ##\exists_{x_1}(A(x_1))\land \neg \exists_{x_1}(A(x_1))##
  • ##\exists_{x_1}(\exists_{x_2}(A(x_1,x_2)\land \exists_{x_3}(A(x_2,x_3)\land A(x_2,x_2))))\land \neg \exists_{x_1}(\exists_{x_2}(\exists_{x_3}( A(x_2,x_1)\land A(x_1,x_3)\land A(x_1,x_1))))##
  • ##\exists_{x_1}(m(x_1) \land \neg\exists_{x_2}(M(x_1, x_2) \land \exists_{x_3}(M(x_1, x_3) \land \neg M(x_2, x_3) \land M(x_3, x_1)) \land \exists_{x_3}(M(x_1, x_3) \land M(x_2, x_3)) \land \neg \exists_{x_3}(M(x_2, x_3) \land M(x_3, x_3))))\land \exists_{x_1}(\exists_{x_2}(m(x_2)\land M(x_2,x_1)\land \exists_{x_3}(M(x_1,x_3)\land M(x_2,x_3))\land \exists_{x_3}(M(x_2,x_3)\land M(x_3,x_2)\land \neg M(x_1,x_3)))\land \neg \exists(M(x_2,x_1)\land M(x_2,x_2)))\lor\exists_{x_1}(M(x_1,x_1)\land \neg \exists_{x_2}(M(x_1,x_2)\land M(x_2,x_2)\land M(x_2,x_1)))##
 
Last edited:
Physics news on Phys.org
I have an idea for smt-solver algorithm myself. Some details are still unclear. It is quite long. I can not post it here very well. Were do you think I could find someone who were interested of it? Should I contact makers of z3?
 
Which mathematical problems z3 can not solve? (I am asking a few examples of simpler mathematical problems/tasks, that z3 can not solve)?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top