Questions about SMT logic solvers

  • Context: Undergrad 
  • Thread starter Thread starter olgerm
  • Start date Start date
  • Tags Tags
    Logic
Click For Summary
SUMMARY

SMT solvers, such as Z3, cannot universally check the consistency of all first-order logic formulas due to the undecidability of first-order logic. This implies that no algorithm exists that can consistently verify every first-order logic formula. The discussion also raises questions about the existence of algorithms for checking consistency in second-order logic formulas, referencing Gödel's second incompleteness theorem, which suggests that such algorithms do not exist. Participants are encouraged to explore the limitations of Z3 and seek collaboration for algorithm development.

PREREQUISITES
  • Understanding of first-order logic and its formulas
  • Familiarity with second-order logic concepts
  • Knowledge of Gödel's incompleteness theorems
  • Experience with SMT solvers, specifically Z3
NEXT STEPS
  • Research the limitations of Z3 in solving specific mathematical problems
  • Explore the implications of Gödel's second incompleteness theorem on algorithm development
  • Investigate existing algorithms for checking consistency in second-order logic
  • Engage with the Z3 development community for collaboration on SMT solver algorithms
USEFUL FOR

Mathematicians, computer scientists, and software developers interested in logic, algorithm design, and the capabilities of SMT solvers like Z3.

olgerm
Gold Member
Messages
532
Reaction score
35
Are smt-solvers (like z3) theoretically able to (always correctly) check consistency of any 1.-order logic formula?
Does it follow from The undecidability of first order logic, that an algorithm, that could check consistency of any 1.-order logic formula, does not exist?
How does the algorithm of work in details? (link to explanation)
Are there any algorithms that could check consistency of any 2.-order logic formula?
Does Gödels 2. incompleteness theorem claim, that such algortihm, that could check consistency of any 2.-order logic formula, does not exist.
Are there any computerprograms that could check consistency of any 2.-order logic formula?

To explain what I mean by 1.-order logic formula I will write here a few examples:
  • ##\exists_{x_1}(A(x_1))\land \neg \exists_{x_1}(A(x_1))##
  • ##\exists_{x_1}(\exists_{x_2}(A(x_1,x_2)\land \exists_{x_3}(A(x_2,x_3)\land A(x_2,x_2))))\land \neg \exists_{x_1}(\exists_{x_2}(\exists_{x_3}( A(x_2,x_1)\land A(x_1,x_3)\land A(x_1,x_1))))##
  • ##\exists_{x_1}(m(x_1) \land \neg\exists_{x_2}(M(x_1, x_2) \land \exists_{x_3}(M(x_1, x_3) \land \neg M(x_2, x_3) \land M(x_3, x_1)) \land \exists_{x_3}(M(x_1, x_3) \land M(x_2, x_3)) \land \neg \exists_{x_3}(M(x_2, x_3) \land M(x_3, x_3))))\land \exists_{x_1}(\exists_{x_2}(m(x_2)\land M(x_2,x_1)\land \exists_{x_3}(M(x_1,x_3)\land M(x_2,x_3))\land \exists_{x_3}(M(x_2,x_3)\land M(x_3,x_2)\land \neg M(x_1,x_3)))\land \neg \exists(M(x_2,x_1)\land M(x_2,x_2)))\lor\exists_{x_1}(M(x_1,x_1)\land \neg \exists_{x_2}(M(x_1,x_2)\land M(x_2,x_2)\land M(x_2,x_1)))##
 
Last edited:
Physics news on Phys.org
I have an idea for smt-solver algorithm myself. Some details are still unclear. It is quite long. I can not post it here very well. Were do you think I could find someone who were interested of it? Should I contact makers of z3?
 
Which mathematical problems z3 can not solve? (I am asking a few examples of simpler mathematical problems/tasks, that z3 can not solve)?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K