Questions about the accelerating Hubble expansion

Click For Summary

Discussion Overview

The discussion revolves around the concept of accelerating expansion in the universe, particularly in relation to Hubble's law and the introduction of dark energy. Participants explore the implications of Hubble's findings from 1929 and how they relate to modern understandings of cosmic expansion, including the conditions under which acceleration occurs.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants question whether Hubble's law described accelerating expansion, suggesting that it only indicates a proportional relationship between velocity and distance.
  • Others argue that the expansion rate depends on the mix of matter, radiation, and dark energy, and that dark energy is necessary to match observed expansion rates.
  • There is a claim that the Hubble constant can decrease over time in a universe dominated by a cosmological constant, which some participants challenge.
  • Participants discuss the mathematical implications of Hubble's law, including the role of the proportionality constant and its potential variability over time.
  • Some assert that even if the proportionality constant were constant, the expansion could still be accelerating, while others argue that this is not the case.
  • There is a distinction made between different cosmological models, such as pure de Sitter spacetime and scenarios involving matter and radiation, affecting the nature of expansion.
  • Participants highlight that Hubble's original observations were limited to relatively nearby galaxies, which may not provide a complete picture of cosmic expansion dynamics.

Areas of Agreement / Disagreement

Participants do not reach a consensus on whether Hubble's law implies accelerating expansion. Multiple competing views remain regarding the implications of Hubble's findings and the role of dark energy in the universe's expansion.

Contextual Notes

Limitations in the discussion include assumptions about the constancy of the proportionality constant and the dependence of expansion dynamics on the mix of cosmic components, which remain unresolved.

Kairos
Messages
182
Reaction score
16
I don't understand the discovery of "accelerating expansion" in 1998 (hence the postulate of dark energy, etc..), because Hubble's old law already described exponentially accelerating expansion in 1929, right?
 
Space news on Phys.org
Kairos said:
Hubble's old law already described exponentially accelerating expansion in 1929, right?
No. All Hubble’s law says is that velocity is proportional to distance. This is true in any expanding FLRW universe.
 
Kairos said:
Hubble's old law already described exponentially accelerating expansion in 1929, right?
Under Hubble's law the recession speed of objects varies with distance, but it may or may not vary with time. Whether it varies with time and how depends on the mix of matter, radiation and dark energy in the universe. You cannot match the observed history of the expansion rate without some dark energy, and the observed mix leads to a Hubble constant that increases with time.
 
Velocity dx(t)/dt is proportional to distance x(t), so dx(t)/dt=k*x(t), so x(t)=exp(k*t), which accelerates with time? without the need to increase k
 
Ibix said:
the observed mix leads to a Hubble constant that increases with time.
This is incorrect. The Hubble constant decreases with time towards a constant value in a universe dominated by a cosmological constant.

An accelerated universe refers to a universe where the second derivative of the scale factor, ##\ddot a##, is larger than zero. This is not the same thing as ##dH/dt > 0## as ##H = \dot a/a## implies
$$
\frac{dH}{dt} = \frac{\ddot a}{a} - \frac{\dot a^2}{a^2} = \frac{\ddot a}{a} - H^2
$$
Thus, the Hubble constant can indeed be negative even if ##\ddot a > 0##.
 
Kairos said:
Velocity dx(t)/dt is proportional to distance x(t), so dx(t)/dt=k*x(t), so x(t)=exp(k*t)
Wrong, because ##k## is not constant in time--the proportionality between velocity and distance changes with time.
 
of course, but that's not relevant to my question.
 
Orodruin said:
An accelerated universe refers to a universe where the second derivative of the scale factor, ##\ddot a##, is larger than zero.
Ah - that makes sense. Thanks.
 
Kairos said:
of course, but that's not relevant to my question.
Are you responding to my post #6? If so, you are wrong, the fact that ##k## is not a constant is highly relevant since it makes your claimed mathematical solution in terms of an exponential wrong. And that claimed mathematical solution is the basis of your claim in the OP.
 
  • #10
Kairos said:
of course, but that's not relevant to my question.
See @Orodruin's reply to me - it's about the sign of ##\ddot a##, not ##\ddot x##.
 
  • #11
PeterDonis said:
k is not a constant is highly relevant since it makes your claimed mathematical solution wrong
This is certainly very important, but I pointed out that even if k had been constant, the expansion would still have accelerated.
 
  • #12
Ibix said:
Under Hubble's law the recession speed of objects varies with distance, but it may or may not vary with time. Whether it varies with time and how depends on the mix of matter, radiation and dark energy in the universe.
Actually, it does vary with time in every FRW solution except a pure de Sitter spacetime, i.e., pure dark energy, no matter or radiation at all.
 
  • #13
Kairos said:
I pointed out that even if k had been constant, the expansion would still have accelerated.
You're looking at it backwards. The case with ##k## constant is a pure de Sitter spacetime, just dark energy (aka cosmological constant), no matter or radiation at all. This is the "pure" case of "accelerated expansion". Adding matter or radiation makes ##k## not constant, and may take away the acceleration, depending on the relative densities of matter/radiation as compared to dark energy. Until a few billion years ago, the density of matter in our universe was high enough that the expansion was decelerating, not accelerating.

Up until the late 1990s, cosmologists thought the expansion of our universe was decelerating now because they thought there was zero dark energy. That decelerating solution is the original one that Hubble's evidence was taken to support. What changed in the late 1990s was that evidence was discovered that the expansion of our universe is accelerating now, and had been until a few billion years ago. That required adding nonzero dark energy to our best current model in order to account for the data.
 
  • #14
PeterDonis said:
You're looking at it backwards. The case with ##k## constant is a pure de Sitter spacetime, just dark energy (aka cosmological constant), no matter or radiation at all. This is the "pure" case of "accelerated expansion". Adding matter or radiation makes ##k## not constant, and may take away the acceleration, depending on the relative densities of matter/radiation as compared to dark energy. Until a few billion years ago, the density of matter in our universe was high enough that the expansion was decelerating, not accelerating.

Up until the late 1990s, cosmologists thought the expansion of our universe was decelerating now because they thought there was zero dark energy. That decelerating solution is the original one that Hubble's evidence was taken to support. What changed in the late 1990s was that evidence was discovered that the expansion of our universe is accelerating now, and had been until a few billion years ago. That required adding nonzero dark energy to our best current model in order to account for the data.
Hubble's law certainly describes well de Sitter's universe, but beyond the details, I'm just saying that this law describes an acceleration of expansion. You seem to agree?
 
  • #15
Kairos said:
Hubble's law certainly describes well de Sitter's universe, but beyond the details, I'm just saying that this law describes an acceleration of expansion. You seem to agree?
No. Hubble's law, as @Orodruin has already told you, is true in any expanding FRW universe, not just de Sitter spacetime; de Sitter spacetime is the particular solution where the proportionality between velocity and distance, what you call ##k##, is not a function of ##t##. If ##k## is a function of ##t##, you do not get exponential expansion. You might not even get accelerating expansion at all. But you will still get a solution in which Hubble's law is true.
 
  • #16
Kairos said:
Hubble's law certainly describes well de Sitter's universe, but beyond the details, I'm just saying that this law describes an acceleration of expansion. You seem to agree?
Hubble’s original law said nothing about the time dependence of the proportionality constant. Just that observed velocity now is proportional to distance now. As such, it would allow any type of expansion. Accelerated, constant, or decelerated.
 
  • #17
PeterDonis said:
particular solution where the proportionality between velocity and distance, what you call k, is not a function of t.
OK, if k is a constant of proportionality, then the expansion is exponential and therefore accelerated.
 
  • #18
Kairos said:
OK, if k is a constant of proportionality, then the expansion is exponential and therefore accelerated.
You are completely missing the point.

While k could technically be a constant in time - Hubble's original law says nothing about this. It only states that, for relatively nearby galaxies, velocity is proportional to distance. The data Hubble had available only contained relatively nearby objects and so he could have concluded nothing about the time dependence of the constant that would later bear his name ... and not be a constant. In fact, in modern cosmology, it is often referred to as the Hubble parameter or Hubble rate - not the Hubble constant.
 
  • Like
Likes   Reactions: Kairos
  • #19
And to continue on that theme. People contemporary with Hubble would most likely have assumed it to be decreasing with time simply due to gravitational attraction and - in the absence of gravity - that the objects would end up further and further away, thereby decreasing the constant.
 
  • #20
Kairos said:
OK, if k is a constant of proportionality, then the expansion is exponential and therefore accelerated.
You are not even responding to the point I made in post #15. Go back and read it again. Carefully.
 
  • #21
Orodruin said:
You are completely missing the point.

While k could technically be a constant in time - Hubble's original law says nothing about this. It only states that, for relatively nearby galaxies, velocity is proportional to distance. The data Hubble had available only contained relatively nearby objects and so he could have concluded nothing about the time dependence of the constant that would later bear his name ... and not be a constant. In fact, in modern cosmology, it is often referred to as the Hubble parameter or Hubble rate - not the Hubble constant.
If k is not constant, this changes everything (but can we still talk about proportionality?).
So how does the Hubble constant evolve over time according to the 1998 discovery?
 
  • #22
Kairos said:
If k is not constant, this changes everything
More precisely, if k is not constant in time. Which it isn't in our universe, as you were already told in posts #3, #5, #6, #9, #13, #16, #18, and #19.

Kairos said:
(but can we still talk about proportionality?).
Proportionality with respect to distance at an instant of time (more precisely an instant of FRW coordinate time).

Kairos said:
So how does the Hubble constant evolve over time according to the 1998 discovery?
You were already told that in post #5. Go back and read it.
 
  • Like
Likes   Reactions: Kairos
  • #23
Ibix said:
the observed mix leads to a Hubble constant that increases with time.
No, decreases with time. See @Orodruin's post #5. What increases with time is ##\dot{a}##. But ##H## is ##\dot{a} / a##, and that decreases with time (asymptotically towards the constant de Sitter value associated with the dark energy density).
 
  • #24
Orodruin said:
And to continue on that theme. People contemporary with Hubble would most likely have assumed it to be decreasing with time simply due to gravitational attraction and - in the absence of gravity - that the objects would end up further and further away, thereby decreasing the constant.
Orodruin, Reading other threads on the same topic, I read in one of your posts, "In fact, in a dark energy dominated universe, H is constant.
I get it!
 
  • #25
Kairos said:
I read in one of your posts, "In fact, in a dark energy dominated universe, H is constant.
You need to quote the specific post so we can see the context. The term "dark energy dominated" is ambiguous: many cosmologists describe our current universe as "dark energy dominated" because the expansion is accelerating, even though ##H## is not constant with time in our current universe, it is decreasing, as @Orodruin said in post #5 of this thread.
 
  • #26
... and given enough time to evolve, it will approach a constant value given by the cosmological constant.

It should be noted that there are ways to achieve an increasing value of ##H##, but it would require an energy component with an equation of state for which ##w < -1##, i.e., pressure needs to be negative and larger in magnitude than the energy density.
 
  • #27
Orodruin said:
... and given enough time to evolve, it will approach a constant value given by the cosmological constant.
Yes, and I suspect that's what you were actually saying in whatever other thread the OP read and quoted from out of context in post #24.
 
  • #28
PeterDonis said:
Yes, and I suspect that's what you were actually saying in whatever other thread the OP read and quoted from out of context in post #24.
... or it was not worth making the distinction of being dominated by a cosmological constant or just having a cosmological constant ... I have probably said things like that a lot of times over the years.
 
  • #29
Orodruin said:
... and given enough time to evolve, it will approach a constant value given by the cosmological constant.
If H will approaches a constant value given by the cosmological constant, there will still be a continuous acceleration ?(exponential).
 
  • #30
Kairos said:
If H will approaches a constant value given by the cosmological constant, there will still be a continuous acceleration ?(exponential).

...

Orodruin said:
An accelerated universe refers to a universe where the second derivative of the scale factor, ##\ddot a##, is larger than zero. This is not the same thing as ##dH/dt > 0## as ##H = \dot a/a## implies
$$
\frac{dH}{dt} = \frac{\ddot a}{a} - \frac{\dot a^2}{a^2} = \frac{\ddot a}{a} - H^2
$$
Thus, the Hubble constant can indeed be negative even if ##\ddot a > 0##.
If ##dH/dt = 0## then clearly ##\ddot a = aH^2 = \dot a^2/a## and therefore the universe is accelerating.

This is also clear from the scale factor being on the form ##a = e^{Ht}## meaning that ##\dot a = Ha## and therefore ##\ddot a = H^2 a## for constant ##H##.
 
  • Like
Likes   Reactions: Kairos

Similar threads

  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
18
Views
1K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K