MHB Quotient remainder theorem problem.

AI Thread Summary
The discussion revolves around proving that for any integer n, the expression 4 divides n(n^2 - 1)(n + 2). Participants highlight that this expression can be rewritten as the product of four consecutive integers: (n-1)n(n+1)(n+2). It is established that among any four consecutive integers, at least one must be divisible by 4, ensuring the product is divisible by 4. The Quotient Remainder Theorem is suggested as a method to analyze the divisibility by substituting n with 4q + r. The conclusion emphasizes that the product of these four integers will always be divisible by 4.
tmt1
Messages
230
Reaction score
0
For any int $$n $$ , prove that $$ 4 | n (n^2 - 1) (n + 2)$$.

I know I have to use the quotient remainder theorem, but I'm wondering how to go about this problem.

I'm not sure how to phrase this problem in English.
 
Mathematics news on Phys.org
Couple of hints.

1. $n(n^2-1)(n+2)=(n-1)\, n \,(n+1)(n+2)$.
2. By the Quotient Remainder Theorem, there exist integers $q$ and $r$ such that $n=4q+r$, where $0\le r<4$.

Does this suggest anything to you?
 
Ackbach said:
Couple of hints.

1. $n(n^2-1)(n+2)=(n-1)\, n \,(n+1)(n+2)$.
2. By the Quotient Remainder Theorem, there exist integers $q$ and $r$ such that $n=4q+r$, where $0\le r<4$.

Does this suggest anything to you?

Right, so $(n-1)\, n \,(n+1)(n+2)$ is 4 consecutive integers. I get that if you take any arbitrary integer, if it is not divisible by 4, you can increment it by some int $c$ such that $0< c < 4$ and get an int that is divisible by 4.

Therefore, if you have 4 consecutive integers, one of those integers will be divisible by 4, and as a result the product of those 4 integers will be divisible by 4. I just don't know how to state or prove this formally.
 
tmt said:
Right, so $(n-1)\, n \,(n+1)(n+2)$ is 4 consecutive integers. I get that if you take any arbitrary integer, if it is not divisible by 4, you can increment it by some int $c$ such that $0< c < 4$ and get an int that is divisible by 4.

Therefore, if you have 4 consecutive integers, one of those integers will be divisible by 4, and as a result the product of those 4 integers will be divisible by 4. I just don't know how to state or prove this formally.

Why not plug in $4q+r$ in for $n$, and see what comes out in the wash?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
1
Views
2K
Replies
3
Views
1K
3
Replies
105
Views
6K
Replies
38
Views
4K
Replies
10
Views
2K
Back
Top