MHB R-modules and Homomorphism of Rings

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Rings
Click For Summary
The discussion centers on understanding the phrase "in a natural way" regarding the relationship between \(S\)-modules and \(R\)-modules through a ring homomorphism \(f:R\rightarrow S\). It is clarified that every \(S\)-module can be treated as an \(R\)-module by defining the operation \(R \times M \rightarrow M\) as \(r.m = f(r)m\), which satisfies the properties of an \(R\)-module. This approach is deemed "natural" as it is the standard method to define the action of \(R\) on \(M\). The conversation also highlights practical implications, such as how \( \mathbb{Z}_n\)-modules can be viewed as \( \mathbb{Z}\)-modules, facilitating the analysis of polynomials with integer coefficients. Overall, the participants express appreciation for the insights shared, indicating a clearer understanding of the topic.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

I find it difficult to get the exact meaning of the following question. What does "in a natural way" means? Is it that we have to show that there exist a isomorphism between \(S\) and a sub-module of \(R\)? Any ideas are greatly appreciated. :)

Question:

Given a ring homomorphism \(f:R\rightarrow S\), show that every \(S\)-module can be considered as an \(R\)-module in a natural way.
 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

I find it difficult to get the exact meaning of the following question. What does "in a natural way" means? Is it that we have to show that there exist a isomorphism between \(S\) and a sub-module of \(R\)? Any ideas are greatly appreciated. :)

Question:

Given a ring homomorphism \(f:R\rightarrow S\), show that every \(S\)-module can be considered as an \(R\)-module in a natural way.

I think I am getting some understanding. Suppose if we have a \(S\)-module called \(M\). Then we can define the operation \(R\times M\rightarrow M\) as, \(r.m=f( r)\,m\). Under this operation it's clear that \(M\) becomes a \(R\)-module. This can be verified by showing that \(M\) satisfies the \(R\)-module properties under the operation defined above.

This I believe is the natural way of defining an \(R\)-module from a given \(S\)-module where \(R\) and \(S\) are homomorphic. Correct me if I am wrong. :)
 
Yes.

It is "natural" because it's pretty much the only way you have available to define

$r.m$.

This theorem tells us, for example, that any $\Bbb Z_n$-module can simply be regarded as a $\Bbb Z$-module, that is: an abelian group, and explains why reducing a polynomial (mod p) can be so useful in investigating polynomials with integer coefficients, because often information in the $S$-module can be "lifted" to an $R$-module.
 
Deveno said:
Yes.

It is "natural" because it's pretty much the only way you have available to define

$r.m$.

This theorem tells us, for example, that any $\Bbb Z_n$-module can simply be regarded as a $\Bbb Z$-module, that is: an abelian group, and explains why reducing a polynomial (mod p) can be so useful in investigating polynomials with integer coefficients, because often information in the $S$-module can be "lifted" to an $R$-module.

Thank you so much. I am sure your immense knowledge about these things will be of great help to me this semester. :)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
846
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
914
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K