I Rabi Hamiltonian : counter-rotating terms

  • I
  • Thread starter Thread starter Paul159
  • Start date Start date
  • Tags Tags
    Hamiltonian Terms
Paul159
Messages
15
Reaction score
4
Hello,

I'm trying to understand the counter-rotating terms of the Rabi Hamiltonian : ##a^\dagger \sigma_+## and ##a \sigma_-##.

I find these terms rather strange, in the sense that naively I would interpret them as describing an electron that gets excited by emitting a photon (and vice versa).
So how should these terms be correctly interpreted ?

Thanks.
 
Physics news on Phys.org
I'd need a bit more context. What are the annihilation and creation operators and the "spin-ladder operators" refer to? Maybe you refer to the Jaynes-Cummings model?

https://en.wikipedia.org/wiki/Jaynes–Cummings_model

Here a two-level "atom" is formally described using spin-1/2 operators. The "counter-rotating terms" mean transitions, where a photon is emitted and the atom is excited to a higher state or a photon is absorbed and the atom relaxes to its lower state.

As explained in the Wikipedia article these rapidly oscillating contributions are often neglected, leading to the solvable "rotating-wave approximation".
 
vanhees71 said:
I'd need a bit more context. What are the annihilation and creation operators and the "spin-ladder operators" refer to? Maybe you refer to the Jaynes-Cummings model?

https://en.wikipedia.org/wiki/Jaynes–Cummings_model

I'm referring to the Rabi Hamiltonian model (Jaynes-Cumming model without the rotating-wave approximation).

vanhees71 said:
Here a two-level "atom" is formally described using spin-1/2 operators. The "counter-rotating terms" mean transitions, where a photon is emitted and the atom is excited to a higher state or a photon is absorbed and the atom relaxes to its lower state.

Yes this is exactly what I don't understand (at least I found this terms counter-intuitive).

vanhees71 said:
As explained in the Wikipedia article these rapidly oscillating contributions are often neglected, leading to the solvable "rotating-wave approximation".

Yes but for strong coupling with matter we cannot neglect them.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
0
Views
1K
Replies
0
Views
3K
Replies
12
Views
1K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
21
Views
2K
Replies
156
Views
10K
Back
Top