Radiance and energy density of a black body

Click For Summary
SUMMARY

The discussion focuses on the relationship between the radiance and energy density of a black body, as described by Planck's law. The energy density, represented as $$\rho(\nu, T)$$, is derived using integration over frequencies, leading to the conclusion that the total energy density $$\rho_T$$ is proportional to the fourth power of temperature, $$T^4$$. The radiance $$R_T$$ is similarly defined and also follows the Stefan-Boltzmann law. The participants explore the derivation of the effusion rate formula, linking particle density and average speed to the radiance emitted from a black body.

PREREQUISITES
  • Understanding of Planck's law and black body radiation
  • Familiarity with the Stefan-Boltzmann law
  • Knowledge of integration techniques in physics
  • Basic concepts of particle dynamics and effusion rates
NEXT STEPS
  • Study the derivation of Planck's blackbody function in detail
  • Explore the implications of the Stefan-Boltzmann law in thermal radiation
  • Learn about the mathematical techniques for integrating functions related to black body radiation
  • Investigate the applications of effusion rate formulas in physical chemistry
USEFUL FOR

Physicists, chemists, and students studying thermodynamics and statistical mechanics, particularly those interested in black body radiation and its applications in various scientific fields.

Airton Rampim
Messages
6
Reaction score
1
How can I find the relation between the radiance and the energy density of a black body? According to Planck's law, the energy density inside a blackbody cavity for modes with frequency ##\nu \in [\nu, \nu + \mathrm{d}\nu]## is given by $$ \rho(\nu, T)\mathrm{d}\nu = \frac{8\pi\nu^2}{c^3}\frac{h\nu}{\exp\left(\frac{h\nu}{k T}\right) - 1}\mathrm{d}\nu. $$ Integrating over all the frequencies we will have

$$ \rho_T = \intop_0^{\infty}\rho(\nu, T)\mathrm{d}\nu = \frac{8\pi h}{c^3} \intop_0^\infty \frac{\nu^3}{\exp\left(\frac{h\nu}{k T}\right) - 1}\mathrm{d} \nu $$

$$ \rho_T = \frac{8\pi h}{c^3}\left(\frac{k T}{h}\right)^4 \underbrace{\intop_0^\infty \frac{u^3}{\exp\left(u\right) - 1}\mathrm{d} u}_{\zeta(4)\Gamma(4) = \pi^4/15} = \frac{8\pi^5 k^4}{15 h^3 c^3}T^4 $$

At equilibrium, these modes will have the same energy of the blackbody that is proportional to the fourth power of the temperature. This is the same result predicted by Stefan-Boltzmann law for the radiance of a black body

$$ R_T = \intop_0^\infty R(\nu, T)\mathrm{d}\nu = \sigma T^4, $$

where ##R(\nu, T)\mathrm{d}\nu## is the radiance emitted by frequencies between ##\nu## and ##\nu + \mathrm{d}\nu## and ##\sigma## is the Stefan-Boltzmann constant. My question is how can I find the following relation

$$ R(\nu, T)\mathrm{d}\nu = \frac{c}{4} \rho(\nu, T)\mathrm{d}\nu? $$
 
Science news on Phys.org
This is an effusion rate formula from chemistry: The number of particles per unit area per unit time that emerge from an aperture is ## R=\frac{n \bar{v}}{4} ##, where ## n ## is the particle density, (number of particles per unit volume), and ## \bar{v} ## is the average speed. ## \\ ## ==========================================================================## \\ ## I have also derived this formula during my undergraduate days, and I still remember the derivation, which involves a double integral. Let me write out this derivation momentarily: ## \\ ## Let ## g(v) ## be the speed distribution of the particles that have density ## n ##. The number of particles ## N ## that emerge from an aperture of area ## A ## in time ## \Delta t ## is given by ##N=n \int\limits_{r=0}^{+\infty} \int\limits_{\theta=0}^{\pi/2} \int\limits_{\phi=0}^{2 \pi} r^2 \, \sin{\theta} \, d \theta \, d \phi \, dr \frac{A \cos{\theta}}{4 \pi r^2} \int\limits_{\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## The ##\phi ## integral gives ## 2 \pi ##, and the ## \sin{\theta} \cos{\theta} \, d \theta ## integral gives ## \frac{1}{2} ##, so we have ## N=\frac{nA}{4} \int\limits_{r=0}^{+\infty} dr \, \int\limits_{v=\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## Reversing the order of integration, it becomes ## N=\frac{nA}{4} \int\limits_{v=0}^{+\infty} g(v) \, dv \, \int\limits_{r=0}^{v \, \Delta t} \, dr ## , which gives the result ## N=\frac{nA \, \Delta t}{4} \int\limits_{v=0}^{+\infty} g(v) v \, dv=\frac{nA \, \Delta t \, \bar{v}}{4} ##. ## \\ ## Finally, ## R=\frac{N}{A \, \Delta t}=\frac{n \bar{v}}{4} ##. ## \\ ## Note: The reason for the ## v=\frac{r}{\Delta t } ## term on the lower limit of the velocity distribution is that the particle needs to be moving fast enough to get to the aperture in time ## \Delta t ##. The derivation basically assumes a collisionless gas. The fraction of particles that are moving in the direction of the aperture is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. The aperture ## A ## is assumed to be small. ## \\ ## The coordinate system is a spherical coordinate system whose origin is at the aperture. The gas is in the upper hemisphere above the aperture, and the density is uniform, and the speed distribution function, ## g(v) ## (normalized to 1), is independent of position. ## \\ ## ======================================================================== ## \\ ## The above result is very useful in doing a derivation of the Planck blackbody function, where the cavity is assumed to contain a photon gas of particles all moving at speed ## c ##, so that ## \bar{v}=c ##.
 
Last edited:
  • Like
Likes   Reactions: Airton Rampim and dextercioby
Charles Link said:
This is an effusion rate formula from chemistry: The number of particles per unit area per unit time that emerge from an aperture is ## R=\frac{n \bar{v}}{4} ##, where ## n ## is the particle density, (number of particles per unit volume), and ## \bar{v} ## is the average speed. ## \\ ## ==========================================================================## \\ ## I have also derived this formula during my undergraduate days, and I still remember the derivation, which involves a double integral. Let me write out this derivation momentarily: ## \\ ## Let ## g(v) ## be the speed distribution of the particles that have density ## n ##. The number of particles ## N ## that emerge from an aperture of area ## A ## in time ## \Delta t ## is given by ##N=n \int\limits_{r=0}^{+\infty} \int\limits_{\theta=0}^{\pi/2} \int\limits_{\phi=0}^{2 \pi} r^2 \, \sin{\theta} \, d \theta \, d \phi \, dr \frac{A \cos{\theta}}{4 \pi r^2} \int\limits_{\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## The ##\phi ## integral gives ## 2 \pi ##, and the ## \sin{\theta} \cos{\theta} \, d \theta ## integral gives ## \frac{1}{2} ##, so we have ## N=\frac{nA}{4} \int\limits_{r=0}^{+\infty} dr \, \int\limits_{v=\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## Reversing the order of integration, it becomes ## N=\frac{nA}{4} \int\limits_{v=0}^{+\infty} g(v) \, dv \, \int\limits_{r=0}^{v \, \Delta t} \, dr ## , which gives the result ## N=\frac{nA \, \Delta t}{4} \int\limits_{v=0}^{+\infty} g(v) v \, dv=\frac{nA \, \Delta t \, \bar{v}}{4} ##. ## \\ ## Finally, ## R=\frac{N}{A \, \Delta t}=\frac{n \bar{v}}{4} ##. ## \\ ## Note: The reason for the ## v=\frac{r}{\Delta t } ## term on the lower limit of the velocity distribution is that the particle needs to be moving fast enough to get to the aperture in time ## \Delta t ##. The derivation basically assumes a collisionless gas. The fraction of particles that are moving in the direction of the aperture is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. The aperture ## A ## is assumed to be small. ## \\ ## The coordinate system is a spherical coordinate system whose origin is at the aperture. The gas is in the upper hemisphere above the aperture, and the density is uniform, and the speed distribution function, ## g(v) ## (normalized to 1), is independent of position. ## \\ ## ======================================================================== ## \\ ## The above result is very useful in doing a derivation of the Planck blackbody function, where the cavity is assumed to contain a photon gas of particles all moving at speed ## c ##, so that ## \bar{v}=c ##.
Thank you very much! It's a really nice demonstration. The only thing I still didn't get it is the fraction of particles being ##\frac{A\cos\theta}{4\pi r^2}##. The ##cos(\theta)## term came from the flux of particles emerging from A? Also, why ##4\pi r^2## and not ##2\pi r^2## if the gas is in the upper hemisphere?
 
Airton Rampim said:
Thank you very much! It's a really nice demonstration. The only thing I still didn't get it is the fraction of particles being ##\frac{A\cos\theta}{4\pi r^2}##. The ##cos(\theta)## term came from the flux of particles emerging from A? Also, why ##4\pi r^2## and not ##2\pi r^2## if the gas is in the upper hemisphere?
The calculation is simply computing what goes out the aperture. As viewed from a location at ## (r, \theta, \phi) ##, the aperture looks like it has area ## A \cos{\theta} ##. (The circular aperture will look like an oval or ellipse when viewed from angle ## \theta ##). Meanwhile from that point at ## (r,\theta, \phi) ##, the particles will emanate uniformly in all directions, and the computation basically computes what fraction passes through the aperture of area ## A ##, (projected area of ## A \cos{\theta} ##), that cross the surface at radius ## r ## with surface area ## 4 \pi r^2 ##. That fraction is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. ## \\ ## The contributions of all of the various locations in the entire hemisphere are then summed in an integral.
 
Last edited:
  • Like
Likes   Reactions: Airton Rampim
Charles Link said:
The calculation is simply computing what goes out the aperture. As viewed from a location at ## (r, \theta, \phi) ##, the aperture looks like it has area ## A \cos{\theta} ##. Meanwhile from that point at ## (r,\theta, \phi) ##, the particles will emanate uniformly in all directions, and the computation basically computes what fraction passes through the aperture of area ## A ##, (projected area of ## A \cos{\theta} ##), that cross the surface at radius ## r ## with surface area ## 4 \pi r^2 ##. That fraction is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. ## \\ ## The contributions of all of the various locations in the entire hemisphere are then summed in an integral.

Ok, now I got it. Thank you again!
 
  • Like
Likes   Reactions: Charles Link

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
846