Radiance and energy density of a black body

Click For Summary

Discussion Overview

The discussion revolves around the relationship between the radiance and energy density of a black body, particularly in the context of Planck's law and the Stefan-Boltzmann law. Participants explore the mathematical derivations and physical implications of these concepts, as well as related principles from chemistry regarding particle effusion rates.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant presents the energy density of a black body as described by Planck's law and seeks to establish a relation between radiance and energy density.
  • Another participant introduces a formula from chemistry regarding the effusion rate of particles, drawing parallels to the behavior of photons in a black body cavity.
  • The effusion rate formula is derived, emphasizing the assumptions made about particle density and speed distribution.
  • A follow-up question arises regarding the derivation of the fraction of particles emerging from an aperture, specifically questioning the use of the cosine term and the surface area considerations.
  • Clarifications are provided about the geometric interpretation of the aperture's area as viewed from a distance and the uniform distribution of particles in all directions.

Areas of Agreement / Disagreement

Participants express differing views on the interpretation of the effusion rate formula and its application to the black body context. Some aspects of the derivation are clarified, but questions remain regarding specific terms and their physical significance.

Contextual Notes

The discussion includes complex mathematical derivations and assumptions about particle behavior, which may not be universally agreed upon. The relationship between radiance and energy density is explored but remains open to interpretation.

Airton Rampim
Messages
6
Reaction score
1
How can I find the relation between the radiance and the energy density of a black body? According to Planck's law, the energy density inside a blackbody cavity for modes with frequency ##\nu \in [\nu, \nu + \mathrm{d}\nu]## is given by $$ \rho(\nu, T)\mathrm{d}\nu = \frac{8\pi\nu^2}{c^3}\frac{h\nu}{\exp\left(\frac{h\nu}{k T}\right) - 1}\mathrm{d}\nu. $$ Integrating over all the frequencies we will have

$$ \rho_T = \intop_0^{\infty}\rho(\nu, T)\mathrm{d}\nu = \frac{8\pi h}{c^3} \intop_0^\infty \frac{\nu^3}{\exp\left(\frac{h\nu}{k T}\right) - 1}\mathrm{d} \nu $$

$$ \rho_T = \frac{8\pi h}{c^3}\left(\frac{k T}{h}\right)^4 \underbrace{\intop_0^\infty \frac{u^3}{\exp\left(u\right) - 1}\mathrm{d} u}_{\zeta(4)\Gamma(4) = \pi^4/15} = \frac{8\pi^5 k^4}{15 h^3 c^3}T^4 $$

At equilibrium, these modes will have the same energy of the blackbody that is proportional to the fourth power of the temperature. This is the same result predicted by Stefan-Boltzmann law for the radiance of a black body

$$ R_T = \intop_0^\infty R(\nu, T)\mathrm{d}\nu = \sigma T^4, $$

where ##R(\nu, T)\mathrm{d}\nu## is the radiance emitted by frequencies between ##\nu## and ##\nu + \mathrm{d}\nu## and ##\sigma## is the Stefan-Boltzmann constant. My question is how can I find the following relation

$$ R(\nu, T)\mathrm{d}\nu = \frac{c}{4} \rho(\nu, T)\mathrm{d}\nu? $$
 
Science news on Phys.org
This is an effusion rate formula from chemistry: The number of particles per unit area per unit time that emerge from an aperture is ## R=\frac{n \bar{v}}{4} ##, where ## n ## is the particle density, (number of particles per unit volume), and ## \bar{v} ## is the average speed. ## \\ ## ==========================================================================## \\ ## I have also derived this formula during my undergraduate days, and I still remember the derivation, which involves a double integral. Let me write out this derivation momentarily: ## \\ ## Let ## g(v) ## be the speed distribution of the particles that have density ## n ##. The number of particles ## N ## that emerge from an aperture of area ## A ## in time ## \Delta t ## is given by ##N=n \int\limits_{r=0}^{+\infty} \int\limits_{\theta=0}^{\pi/2} \int\limits_{\phi=0}^{2 \pi} r^2 \, \sin{\theta} \, d \theta \, d \phi \, dr \frac{A \cos{\theta}}{4 \pi r^2} \int\limits_{\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## The ##\phi ## integral gives ## 2 \pi ##, and the ## \sin{\theta} \cos{\theta} \, d \theta ## integral gives ## \frac{1}{2} ##, so we have ## N=\frac{nA}{4} \int\limits_{r=0}^{+\infty} dr \, \int\limits_{v=\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## Reversing the order of integration, it becomes ## N=\frac{nA}{4} \int\limits_{v=0}^{+\infty} g(v) \, dv \, \int\limits_{r=0}^{v \, \Delta t} \, dr ## , which gives the result ## N=\frac{nA \, \Delta t}{4} \int\limits_{v=0}^{+\infty} g(v) v \, dv=\frac{nA \, \Delta t \, \bar{v}}{4} ##. ## \\ ## Finally, ## R=\frac{N}{A \, \Delta t}=\frac{n \bar{v}}{4} ##. ## \\ ## Note: The reason for the ## v=\frac{r}{\Delta t } ## term on the lower limit of the velocity distribution is that the particle needs to be moving fast enough to get to the aperture in time ## \Delta t ##. The derivation basically assumes a collisionless gas. The fraction of particles that are moving in the direction of the aperture is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. The aperture ## A ## is assumed to be small. ## \\ ## The coordinate system is a spherical coordinate system whose origin is at the aperture. The gas is in the upper hemisphere above the aperture, and the density is uniform, and the speed distribution function, ## g(v) ## (normalized to 1), is independent of position. ## \\ ## ======================================================================== ## \\ ## The above result is very useful in doing a derivation of the Planck blackbody function, where the cavity is assumed to contain a photon gas of particles all moving at speed ## c ##, so that ## \bar{v}=c ##.
 
Last edited:
  • Like
Likes   Reactions: Airton Rampim and dextercioby
Charles Link said:
This is an effusion rate formula from chemistry: The number of particles per unit area per unit time that emerge from an aperture is ## R=\frac{n \bar{v}}{4} ##, where ## n ## is the particle density, (number of particles per unit volume), and ## \bar{v} ## is the average speed. ## \\ ## ==========================================================================## \\ ## I have also derived this formula during my undergraduate days, and I still remember the derivation, which involves a double integral. Let me write out this derivation momentarily: ## \\ ## Let ## g(v) ## be the speed distribution of the particles that have density ## n ##. The number of particles ## N ## that emerge from an aperture of area ## A ## in time ## \Delta t ## is given by ##N=n \int\limits_{r=0}^{+\infty} \int\limits_{\theta=0}^{\pi/2} \int\limits_{\phi=0}^{2 \pi} r^2 \, \sin{\theta} \, d \theta \, d \phi \, dr \frac{A \cos{\theta}}{4 \pi r^2} \int\limits_{\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## The ##\phi ## integral gives ## 2 \pi ##, and the ## \sin{\theta} \cos{\theta} \, d \theta ## integral gives ## \frac{1}{2} ##, so we have ## N=\frac{nA}{4} \int\limits_{r=0}^{+\infty} dr \, \int\limits_{v=\frac{r}{\Delta t}}^{+\infty} g(v) \, dv ##. ## \\ ## Reversing the order of integration, it becomes ## N=\frac{nA}{4} \int\limits_{v=0}^{+\infty} g(v) \, dv \, \int\limits_{r=0}^{v \, \Delta t} \, dr ## , which gives the result ## N=\frac{nA \, \Delta t}{4} \int\limits_{v=0}^{+\infty} g(v) v \, dv=\frac{nA \, \Delta t \, \bar{v}}{4} ##. ## \\ ## Finally, ## R=\frac{N}{A \, \Delta t}=\frac{n \bar{v}}{4} ##. ## \\ ## Note: The reason for the ## v=\frac{r}{\Delta t } ## term on the lower limit of the velocity distribution is that the particle needs to be moving fast enough to get to the aperture in time ## \Delta t ##. The derivation basically assumes a collisionless gas. The fraction of particles that are moving in the direction of the aperture is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. The aperture ## A ## is assumed to be small. ## \\ ## The coordinate system is a spherical coordinate system whose origin is at the aperture. The gas is in the upper hemisphere above the aperture, and the density is uniform, and the speed distribution function, ## g(v) ## (normalized to 1), is independent of position. ## \\ ## ======================================================================== ## \\ ## The above result is very useful in doing a derivation of the Planck blackbody function, where the cavity is assumed to contain a photon gas of particles all moving at speed ## c ##, so that ## \bar{v}=c ##.
Thank you very much! It's a really nice demonstration. The only thing I still didn't get it is the fraction of particles being ##\frac{A\cos\theta}{4\pi r^2}##. The ##cos(\theta)## term came from the flux of particles emerging from A? Also, why ##4\pi r^2## and not ##2\pi r^2## if the gas is in the upper hemisphere?
 
Airton Rampim said:
Thank you very much! It's a really nice demonstration. The only thing I still didn't get it is the fraction of particles being ##\frac{A\cos\theta}{4\pi r^2}##. The ##cos(\theta)## term came from the flux of particles emerging from A? Also, why ##4\pi r^2## and not ##2\pi r^2## if the gas is in the upper hemisphere?
The calculation is simply computing what goes out the aperture. As viewed from a location at ## (r, \theta, \phi) ##, the aperture looks like it has area ## A \cos{\theta} ##. (The circular aperture will look like an oval or ellipse when viewed from angle ## \theta ##). Meanwhile from that point at ## (r,\theta, \phi) ##, the particles will emanate uniformly in all directions, and the computation basically computes what fraction passes through the aperture of area ## A ##, (projected area of ## A \cos{\theta} ##), that cross the surface at radius ## r ## with surface area ## 4 \pi r^2 ##. That fraction is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. ## \\ ## The contributions of all of the various locations in the entire hemisphere are then summed in an integral.
 
Last edited:
  • Like
Likes   Reactions: Airton Rampim
Charles Link said:
The calculation is simply computing what goes out the aperture. As viewed from a location at ## (r, \theta, \phi) ##, the aperture looks like it has area ## A \cos{\theta} ##. Meanwhile from that point at ## (r,\theta, \phi) ##, the particles will emanate uniformly in all directions, and the computation basically computes what fraction passes through the aperture of area ## A ##, (projected area of ## A \cos{\theta} ##), that cross the surface at radius ## r ## with surface area ## 4 \pi r^2 ##. That fraction is ## \frac{A \cos{\theta}}{4 \pi r^2} ##. ## \\ ## The contributions of all of the various locations in the entire hemisphere are then summed in an integral.

Ok, now I got it. Thank you again!
 
  • Like
Likes   Reactions: Charles Link

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
979