MHB Rahul's question at Yahoo Answers regarding hyperbolic and circular trigonometry

Click For Summary
The discussion revolves around proving the equation tanh²(x/2) = tan²(θ/2) given that cosh(x) = sec(θ). The proof starts with the definition of tanh(x/2) and uses the identities for sinh and cosh to derive the formula tanh²(x/2) = (cosh(x) - 1) / (cosh(x) + 1). By substituting cosh(x) with sec(θ), the expression transforms into (sec(θ) - 1) / (sec(θ) + 1). Finally, applying trigonometric identities leads to the conclusion that tanh²(x/2) equals tan²(θ/2), thus completing the proof.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

If coshx=sec (theta) then prove that tanh^2(x/2)= tan^2 (theta/2)?


tanh^2 (x/2)=coshx-1/.coshx+1
this is how the problem starts i can't understan how did they get this.. can anybody help me out...

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Hello Rahul,

Let's begin with:

$$\tanh\left(\frac{x}{2} \right)=\frac{\sinh\left(\frac{x}{2} \right)}{\cosh\left(\frac{x}{2} \right)}$$

Next, we can employ the definitions:

$$\sinh(u)\equiv\frac{e^u-e^{-u}}{2}$$

$$\cosh(u)\equiv\frac{e^u+e^{-u}}{2}$$

To obtain:

$$\tanh\left(\frac{x}{2} \right)=\frac{\dfrac{e^{\frac{x}{2}}-e^{-\frac{x}{2}}}{2}}{\dfrac{e^{\frac{x}{2}}+e^{-\frac{x}{2}}}{2}}$$

Multiplying the right side by $$1=\frac{2}{2}$$ we obtain:

$$\tanh\left(\frac{x}{2} \right)=\frac{e^{\frac{x}{2}}-e^{-\frac{x}{2}}}{e^{\frac{x}{2}}+e^{-\frac{x}{2}}}$$

Squaring both sides, we obtain:

$$\tanh^2\left(\frac{x}{2} \right)=\frac{e^{x}+e^{-x}-2}{e^{x}+e^{-x}+2}$$

Dividing each term in the numerator and denominator on the right by $2$ we may write:

$$\tanh^2\left(\frac{x}{2} \right)=\frac{\dfrac{e^{x}+e^{-x}}{2}-1}{\dfrac{e^{x}+e^{-x}}{2}+1}$$

Using the definition for the hyperbolic cosine function, we obtain:

$$\tanh^2\left(\frac{x}{2} \right)=\frac{\cosh(x)-1}{\cosh(x)+1}$$

Now, we are given $$\cosh(x)=\sec(\theta)$$, and so we may write:

$$\tanh^2\left(\frac{x}{2} \right)=\frac{\sec(\theta)-1}{\sec(\theta)+1}$$

Multiply the right side by $$1=\frac{\cos(\theta)}{\cos(\theta)}$$ to get:

$$\tanh^2\left(\frac{x}{2} \right)=\frac{1-\cos(\theta)}{1+\cos(\theta)}$$

In the numerator use the double-angle identity for cosine $$\cos(2u)=1-2\sin^2(u)$$ and in the denominator use the double-angle identity for cosine $$\cos(2u)=2\cos^2(u)-1$$ to get:

$$\tanh^2\left(\frac{x}{2} \right)=\frac{1-\left(1-2\sin^2\left(\dfrac{\theta}{2} \right) \right)}{1+\left(2\cos^2\left(\dfrac{\theta}{2} \right)-1 \right)}=\frac{2\sin^2\left(\dfrac{\theta}{2} \right)}{2\cos^2\left(\dfrac{\theta}{2} \right)}$$

Hence, we have:

$$\tanh^2\left(\frac{x}{2} \right)=\tan^2\left(\dfrac{\theta}{2} \right)$$

And this is what we were asked to show.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K