Randomly Stopped Sums vs the sum of I.I.D. Random Variables

Click For Summary
SUMMARY

The discussion centers on the distinction between two theorems related to Probability Generating Functions (PGFs). Theorem 1 states that for independent random variables \(X_1, \ldots, X_n\), the PGF of their sum \(Y = X_1 + \ldots + X_n\) is given by \(G_Y(s) = \prod_{i=1}^n G_{X_i}(s)\). In contrast, Theorem 2 involves a random variable \(N\) that determines the number of terms in the sum \(T_N = X_1 + \ldots + X_N\), leading to the PGF \(G_{T_N}(s) = G_N(G_X(s))\). The confusion arises from incorrectly applying the proof of Theorem 1 to Theorem 2 without accounting for the dependence on the random variable \(N\).

PREREQUISITES
  • Understanding of Probability Generating Functions (PGFs)
  • Familiarity with independent random variables
  • Knowledge of conditional expectation
  • Basic concepts of stochastic processes
NEXT STEPS
  • Study the concept of conditional expectation in probability theory
  • Learn about the properties and applications of Probability Generating Functions
  • Explore stochastic processes and their implications in random variable theory
  • Investigate the differences between finite and infinite sums of random variables
USEFUL FOR

Mathematicians, statisticians, and students of probability theory seeking to deepen their understanding of Probability Generating Functions and their applications in stochastic processes.

CGandC
Messages
326
Reaction score
34
I've came across the two following theorems in my studies of Probability Generating Functions:

Theorem 1:
Suppose ##X_1, ... , X_n## are independent random variables, and let ##Y = X_1 + ... + X_n##. Then,
##G_Y(s) = \prod_{i=1}^n G_{X_i}(s)##

Theorem 2:
Let ##X_1, X_2, ...## be a sequence of independent and identically distributed random variables with common PGF ##G_X##. Let ##N## be a random variable, independent of the ##X_i##'s with PGF ##G_N##, and let ##T_N = X_1 + ... + X_N = \sum_{i=1}^N X_i##. Then the PGF of ##T_N## is:
##G_{T_N}(s) = G_N (G_X(s))##

Question:
I don't understand the difference between these two theorems.
From reading here: https://stats.stackexchange.com/que...topped-sums-vs-the-sum-of-i-i-d-random-variab
I understand that in first theorem ## n ## is a number that we know so we know how many ## X_i ## will appear in the sum in ## Y ##.
But in the second theorem ## N ## is a random variable so we don't know how many ## X_i ## will appear in the sum ## Y ##.

But I still don't fully understand.

the proof for the first theorem goes as follows:
##
G_Y(t) =G_{X_1+X_2+\ldots+X_n}(t)=\mathbb{E}\left[t^{X_1+X_2+\ldots+X_n}\right]=\mathbb{E}\left[\prod_{i=1}^n t^{X_i}\right]=\prod_{i=1}^n \mathbb{E}\left[t^{X_i}\right]=\prod_{i=1}^n G_{X_i}(t)
##

Then I tried to prove the second theorem using exactly the same proof as follows:
##
G_Y(t) =G_{X_1+X_2+\ldots+X_N}(t)=\mathbb{E}\left[t^{X_1+X_2+\ldots+X_N}\right]=\mathbb{E}\left[\prod_{i=1}^N t^{X_i}\right]=\prod_{i=1}^N \mathbb{E}\left[t^{X_i}\right]=\prod_{i=1}^N G_{X_i}(t)
##
this proof is specious, but I don't understand why. I mean, the number of ## X_i## 's that will be multiplied by each other is determined by ## N ## ,even if we don't know it, so I don't understand what's the problem.Thanks in advance for any help!
 
Physics news on Phys.org
CGandC said:
I've came across the two following theorems in my studies of Probability Generating Functions:

Theorem 1:
Suppose ##X_1, ... , X_n## are independent random variables, and let ##Y = X_1 + ... + X_n##. Then,
##G_Y(s) = \prod_{i=1}^n G_{X_i}(s)##

Theorem 2:
Let ##X_1, X_2, ...## be a sequence of independent and identically distributed random variables with common PGF ##G_X##. Let ##N## be a random variable, independent of the ##X_i##'s with PGF ##G_N##, and let ##T_N = X_1 + ... + X_N = \sum_{i=1}^N X_i##. Then the PGF of ##T_N## is:
##G_{T_N}(s) = G_N (G_X(s))##

Question:
I don't understand the difference between these two theorems.
From reading here: https://stats.stackexchange.com/que...topped-sums-vs-the-sum-of-i-i-d-random-variab
I understand that in first theorem ## n ## is a number that we know so we know how many ## X_i ## will appear in the sum in ## Y ##.
But in the second theorem ## N ## is a random variable so we don't know how many ## X_i ## will appear in the sum ## Y ##.

But I still don't fully understand.

the proof for the first theorem goes as follows:
##
G_Y(t) =G_{X_1+X_2+\ldots+X_n}(t)=\mathbb{E}\left[t^{X_1+X_2+\ldots+X_n}\right]=\mathbb{E}\left[\prod_{i=1}^n t^{X_i}\right]=\prod_{i=1}^n \mathbb{E}\left[t^{X_i}\right]=\prod_{i=1}^n G_{X_i}(t)
##

Then I tried to prove the second theorem using exactly the same proof as follows:
##
G_Y(t) =G_{X_1+X_2+\ldots+X_N}(t)=\mathbb{E}\left[t^{X_1+X_2+\ldots+X_N}\right]=\mathbb{E}\left[\prod_{i=1}^N t^{X_i}\right]=\prod_{i=1}^N \mathbb{E}\left[t^{X_i}\right]=\prod_{i=1}^N G_{X_i}(t)
##
this proof is specious, but I don't understand why. I mean, the number of ## X_i## 's that will be multiplied by each other is determined by ## N ## ,even if we don't know it, so I don't understand what's the problem.Thanks in advance for any help!

\prod_{i=1}^N G_{X_i}(t) = (G_{X_1}(t))^N is a random variable: it's a function of N. To find \mathbb{E}(t^Y) you need to remove this dependence on N by using conditional expectation: <br /> \begin{split}<br /> \mathbb{E}(t^{Y}) &amp;= \sum_{n=1}^\infty \mathbb{E}(t^{X_1 + \dots + X_N} | N = n)\mathbb{P}(N = n) \\<br /> &amp;= \sum_{n=1}^\infty \mathbb{E}(t^{X_1 + \dots + X_n})\mathbb{P}(N = n) \end{split}
 
  • Like
Likes   Reactions: jim mcnamara and CGandC
Ahh! that makes sense, thank you a lot!
 
  • Like
Likes   Reactions: jim mcnamara

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K