Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Range of weak values

  1. Nov 2, 2014 #1
    The weak value of an observable A with pre-selected state ##\psi## and post-selected state ##\phi## is defined as:
    [itex]A_w =\langle \phi | A | \psi \rangle / \langle \phi | \psi \rangle[/itex]

    References like Wikipedia then include a comment that the weak value is not bounded by the range of eigenvalues of A, e.g. when ##\phi## and ##\psi## are nearly orthogonal the value gets larger than the biggest eigenvalue of A. I know the denominator is small in such cases, but when I do the math it seems like the numerator should shrink in proportion and the range of the weak values should not exceed the range of the eigenvalues of A, let me explain and please let me know if you see my mistake.

    If I rewrite ##\psi## as a linear combinations of the eigenstates of A, e.g.
    [itex]\psi = \sum_i \psi_i |A_i \rangle[/itex]
    then do the math I just end up with a weighted average of the eigenvalues ([itex]\alpha_i[/itex]) of A, i.e.
    [itex]A_w = \sum_i w_i \alpha_i / \sum_i w_i[/itex] where
    [itex]w_i = \psi_i \langle \phi | A_i \rangle[/itex]

    Anyone see what I missed?
     
  2. jcsd
  3. Nov 3, 2014 #2

    Demystifier

    User Avatar
    Science Advisor

    You miss the possibility that absolute values of [itex]w_i[/itex] are not small, but have different signs (or phases if [itex]w_i[/itex] are complex) such that [itex]\sum_i w_i[/itex] is small.
     
    Last edited: Nov 3, 2014
  4. Nov 3, 2014 #3
    Ah yes. Thanks Demystifier!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Range of weak values
  1. Weak force (Replies: 2)

  2. Weak interaction (Replies: 5)

  3. Weak localization (Replies: 5)

  4. Weak Force (Replies: 3)

Loading...