MHB Rank of composition of linear maps

Click For Summary
The discussion revolves around proving that the rank of the composition of linear maps is bounded by the minimum rank of the individual maps. The base case for one map is established, and the inductive hypothesis assumes the statement holds for n maps. A counterexample is provided to clarify that the image of the composition is not necessarily contained within the images of the individual maps. It is concluded that the rank of the composition is less than or equal to the ranks of both maps involved, allowing for the use of the minimum in the inductive step. The participants agree on the approach to finalize the proof.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Question 1:
Let $C$ be a $\mathbb{R}$-vector space, $1\leq n\in \mathbb{N}$ and let $\phi_1, \ldots , \phi_n:V\rightarrow V$ be linear maps.
I have shown by induction that $\phi_1\circ \ldots \circ \phi_n$ is then also a linear map.
I want to show now by induction that if $V$ is finite then $\text{Rank}(\phi_1\circ \ldots \circ \phi_n)\leq \min \{\text{Rank}(\phi_i)\mid 1\leq i\leq n\}$.

Base Case : For $n=1$ we have that $\text{Rank}(\phi_1)\leq \min \{\text{Rang}(\phi_1)\}$, so the equality holds.
Inductive Hypothesis : We suppose that it holds for $n=m$, so $\text{Rank}(\phi_1\circ \ldots \circ \phi_m)\leq \min \{\text{Rank}(\phi_i)\mid 1\leq i\leq m\}$. (IV)
Inductive Step : We want to show that it holds for $n=m+1$, i.e. that $\text{Rank}(\phi_1\circ \ldots \circ \phi_m\circ \phi_{m+1})\leq \min \{\text{Rank}(\phi_i)\mid 1\leq i\leq m+1\}$.
Does it hold in general that $\text{Im}(f\circ g)\subseteq \text{Im}(f)$ and $\text{Im}(f\circ g)\subseteq \text{Im}(g)$ and so we get $\text{Rank}(f\circ g)\leq \text{Rank}(f)$ and $\text{Rank}(f\circ g)\leq \text{Rank}(g)$ ?

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Does it hold in general that $\text{Im}(f\circ g)\subseteq \text{Im}(f)$ and $\text{Im}(f\circ g)\subseteq \text{Im}(g)$ and so we get $\text{Rank}(f\circ g)\leq \text{Rank}(f)$ and $\text{Rank}(f\circ g)\leq \text{Rank}(g)$ ?
Hey mathmari!

I'm afraid not. (Shake)

Consider $f:v\mapsto e_1$ and $g:v\mapsto e_2$. Then $\text{Im}(f\circ g)\not\subseteq \text{Im}(g)$.
 
Klaas van Aarsen said:
I'm afraid not. (Shake)

Consider $f:v\mapsto e_1$ and $g:v\mapsto e_2$. Then $\text{Im}(f\circ g)\not\subseteq \text{Im}(g)$.

Ah ok.. But how can we continue then the inductive step? :unsure:
 
mathmari said:
Ah ok.. But how can we continue then the inductive step?
The rank of a function with a specific domain is the number of independent vectors in the image.
And the number of independent vectors in the image is at most the number of independent vectors in the domain. 🤔
 
Klaas van Aarsen said:
The rank of a function with a specific domain is the number of independent vectors in the image.
And the number of independent vectors in the image is at most the number of independent vectors in the domain. 🤔

But how do we use that? I got stuck right now. :unsure:
 
mathmari said:
But how do we use that? I got stuck right now.
Suppose $\operatorname{Rank}(f\circ g)>\operatorname{Rank}(g)$.
Then there must be more independent vectors in $(f\circ g)(V)$ than in $g(V)$.
But there can only be at most as many independent vectors in $f(g(V))$ as there are in $g(V)$.
Contradiction.
Therefore $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(g)$. 🤔
 
Klaas van Aarsen said:
Suppose $\operatorname{Rank}(f\circ g)>\operatorname{Rank}(g)$.
Then there must be more independent vectors in $(f\circ g)(V)$ than in $g(V)$.
But there can only be at most as many independent vectors in $f(g(V))$ as there are in $g(V)$.
Contradiction.
Therefore $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(g)$. 🤔

Ahh ok (Malthe)

And in general it holds that $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(f)$.

So we have that $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(f)$ and $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(g)$ and then we take the minimum? :unsure:
 
mathmari said:
And in general it holds that $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(f)$.

So we have that $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(f)$ and $\operatorname{Rank}(f\circ g)\le\operatorname{Rank}(g)$ and then we take the minimum?
Yep. (Nod)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K