Rate Problem: How many minutes does it take 14 people to paint 14 walls?

  • Context: MHB 
  • Thread starter Thread starter bp05528
  • Start date Start date
  • Tags Tags
    Paint Rate
Click For Summary
SUMMARY

The problem of determining how long it takes 14 people to paint 14 walls is solved using a straightforward application of the formula for proportional work rates. Given that 7 people can paint 7 walls in 28 minutes, it is established that 14 people will also take 28 minutes to paint 14 walls, as the rate of work remains constant. This conclusion is derived from the formula: if X1 producers can make Y1 products in time T1, then X2 producers can make Y2 products in time T2, maintaining the same rate of productivity.

PREREQUISITES
  • Understanding of basic algebraic manipulation
  • Familiarity with work rate problems
  • Knowledge of proportional relationships
  • Ability to apply mathematical formulas to real-world scenarios
NEXT STEPS
  • Study the application of work rate problems in different contexts
  • Learn how to derive and use formulas for proportional relationships
  • Explore similar problems involving multiple producers and products
  • Practice solving problems that involve varying rates of work
USEFUL FOR

Students, educators, and anyone interested in mathematical problem-solving, particularly in the context of work rate and proportional reasoning.

bp05528
Messages
1
Reaction score
0
It takes 28 minutes for 7 people to paint 7 walls.
How many minutes does it take 14 people to paint 14 walls?
 
Mathematics news on Phys.org
bp05528 said:
It takes 28 minutes for 7 people to paint 7 walls.
How many minutes does it take 14 people to paint 14 walls?

If the walls are the same size and each individual paints at an equal rate (1 person paints 1 wall in 28 minutes), then it takes the same amount of time ... 28 minutes.
 
Hi bp05528.

There is a very useful formula for problems of this kind:

If $X_1$ “producers” can make $Y_1$ “products” in time $T_1$ and $X_2$ “producers” can make $Y_2$ “products” in time $T_2$ at the same rate, then
$$\boxed{\frac{X_1T_1}{Y_1}\ =\ \frac{X_2T_2}{Y_2}}.$$

Example: If $5$ hens can lay $5$ eggs in $5$ days …

  • how long will it take $10$ hens to lay $10$ eggs?
  • how many hens can lay $10$ eggs in $10$ days?
  • how many eggs will $10$ hens lay in $10$ days?
Answers: (a) $5$ days, (b) $5$ hens, (c) $20$ eggs. You can either work the answers out by simple logic, or use the formula above, where the “producers” are hens and the “products” are eggs.

In this case of your problem:
bp05528 said:
It takes 28 minutes for 7 people to paint 7 walls.
How many minutes does it take 14 people to paint 14 walls?
the “producers” are the wall painters and “products” are painted walls. Substituting $X_1=7$, $Y_1=7$, $T_1=28$, $X_2=14$, $Y_2=14$ into the formula gives
$$\frac{7\cdot28}7\ =\ \frac{14\cdot T_2}{14}$$
$\implies\ T_2=28$ minutes. (In other words, it takes the same time for twice the number of people to do twice the amount of work – which makes sense, doesn’t it?)

Here is the proof of the formula above.

$X_1$ producers make $Y_1$ products in time $T_1$

$\implies$ $1$ producer makes $\dfrac{Y_1}{X_1}$ products in time $T_1$

$\implies$ $X_2$ producers make $\dfrac{X_2Y_1}{X_1}$ products in time $T_1$

$\implies$ $X_2$ producers make $\dfrac{X_2Y_1}{X_1T_1}$ products in time $1$

$\implies$ $X_2$ producers make $\dfrac{X_2Y_1T_2}{X_1T_1}$ products in time $T_2$.

That is to say,
$$Y_2\ =\ \frac{X_2Y_1T_2}{X_1T_1}$$
which can be rearranged to the formula above.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K