MHB Rate Problem: How many minutes does it take 14 people to paint 14 walls?

  • Thread starter Thread starter bp05528
  • Start date Start date
  • Tags Tags
    Paint Rate
bp05528
Messages
1
Reaction score
0
It takes 28 minutes for 7 people to paint 7 walls.
How many minutes does it take 14 people to paint 14 walls?
 
Mathematics news on Phys.org
bp05528 said:
It takes 28 minutes for 7 people to paint 7 walls.
How many minutes does it take 14 people to paint 14 walls?

If the walls are the same size and each individual paints at an equal rate (1 person paints 1 wall in 28 minutes), then it takes the same amount of time ... 28 minutes.
 
Hi bp05528.

There is a very useful formula for problems of this kind:

If $X_1$ “producers” can make $Y_1$ “products” in time $T_1$ and $X_2$ “producers” can make $Y_2$ “products” in time $T_2$ at the same rate, then
$$\boxed{\frac{X_1T_1}{Y_1}\ =\ \frac{X_2T_2}{Y_2}}.$$

Example: If $5$ hens can lay $5$ eggs in $5$ days …

  • how long will it take $10$ hens to lay $10$ eggs?
  • how many hens can lay $10$ eggs in $10$ days?
  • how many eggs will $10$ hens lay in $10$ days?
Answers: (a) $5$ days, (b) $5$ hens, (c) $20$ eggs. You can either work the answers out by simple logic, or use the formula above, where the “producers” are hens and the “products” are eggs.

In this case of your problem:
bp05528 said:
It takes 28 minutes for 7 people to paint 7 walls.
How many minutes does it take 14 people to paint 14 walls?
the “producers” are the wall painters and “products” are painted walls. Substituting $X_1=7$, $Y_1=7$, $T_1=28$, $X_2=14$, $Y_2=14$ into the formula gives
$$\frac{7\cdot28}7\ =\ \frac{14\cdot T_2}{14}$$
$\implies\ T_2=28$ minutes. (In other words, it takes the same time for twice the number of people to do twice the amount of work – which makes sense, doesn’t it?)

Here is the proof of the formula above.

$X_1$ producers make $Y_1$ products in time $T_1$

$\implies$ $1$ producer makes $\dfrac{Y_1}{X_1}$ products in time $T_1$

$\implies$ $X_2$ producers make $\dfrac{X_2Y_1}{X_1}$ products in time $T_1$

$\implies$ $X_2$ producers make $\dfrac{X_2Y_1}{X_1T_1}$ products in time $1$

$\implies$ $X_2$ producers make $\dfrac{X_2Y_1T_2}{X_1T_1}$ products in time $T_2$.

That is to say,
$$Y_2\ =\ \frac{X_2Y_1T_2}{X_1T_1}$$
which can be rearranged to the formula above.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top