MHB Rayanjafar's parametric integral question for YAnswers

CaptainBlack
Messages
801
Reaction score
0
"C4 question, please help.?
the curve C has parametric equations x = sint , y = sin2t, 0<t<pi/2
a) find the area of the region bounded by C and the x-axis

and, if this region is revolved through 2pi radians about the x-axis,
b) find the volume of the solid formed

How do you do this question. Can anyone please show me step by step?"

C4 here denotes a question appropriate to the UK Core 4 A-Level Maths Exam
 
Last edited:
Mathematics news on Phys.org
(a) First sketch the curve. It obviously starts with slope \(2\) at \((0,0)\) and rises to a maximum of \(y=1\) at \(x=1/\sqrt(2)\) and then falls to \(y=0\) at \(x=1\).
View attachment 515The area we want is the integral:

\[I = \int_{x=0}^1 y(x) dx\]
Use the substitution \(t=arcsin(x), x=sin(t)\). Then \(dx = cos(t) dt\), and the integral becomes:

\[I = \int_{t=0}^{\pi/2} sin(2t) cos(t) dt\]
Now we replace the \(sin(2t)\) using the double angle formula by \(2 sin(t) cos(t)\) to get:

\[I = \int_{t=0}^{\pi/2} 2sin(t) (cos(t))^2 dt\]
As the integrand is the derivative of \(-(2/3) (cos(t))^3\) we get:

\[I = -(2/3) [0-1] = 2/3\].
The second part proceeds in much the same way once we write down the volume of revolution:

\[V= \int_{x=0}^1 \pi (y(x))^2 dx\]
and proceed in much the same way as before

CB
 

Attachments

  • parametric plot.JPG
    parametric plot.JPG
    53.8 KB · Views: 86
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top