Real & Complex Analysis: Beginner's Guide

  • Context: MHB 
  • Thread starter Thread starter mathworker
  • Start date Start date
  • Tags Tags
    Analysis Suggestion
Click For Summary

Discussion Overview

The discussion revolves around recommendations for starting with real and complex analysis, particularly for beginners without prior knowledge. Participants share suggestions for textbooks and resources, as well as prerequisites for studying these subjects.

Discussion Character

  • Exploratory
  • Technical explanation
  • Homework-related

Main Points Raised

  • Some participants emphasize the importance of having a solid foundation in algebra, functions, calculus, and complex numbers before diving into real and complex analysis.
  • One participant recommends "Principles of Mathematical Analysis" by Rudin, noting its density and suggesting it may be challenging for beginners.
  • Another participant suggests "Fundamentals of Complex Analysis," highlighting its clarity and the value of its exercises, particularly in the first six chapters.
  • A different recommendation is "Mathematical Analysis: A Concise Introduction," which is noted for its supportive structure in the early chapters and its comprehensive coverage of analysis topics.
  • Participants discuss the challenges of studying Rudin independently, suggesting that many have benefited from guidance while using it.
  • One participant mentions the broad applicability of the methods taught in "Mathematical Analysis: A Concise Introduction," including connections to physics and numerical methods.

Areas of Agreement / Disagreement

There is no consensus on a single best resource, as participants offer multiple recommendations and express varying opinions on the suitability of different textbooks for beginners. Some participants agree on the necessity of prior knowledge, while others express uncertainty about their future coursework in real analysis.

Contextual Notes

Participants note that the difficulty of the recommended texts may vary based on individual backgrounds and prior knowledge. There is also mention of the potential lack of formal instruction in real analysis for those shifting to different fields of study.

mathworker
Messages
110
Reaction score
0
what is the best best way to start with real and complex analysis i don't have any prior knowledge about them(i think).any suggestions 'bout books or websites.
 
Physics news on Phys.org
Re: analysis suggetion

mathworker said:
what is the best best way to start with real and complex analysis i don't have any prior knowledge about them(i think).any suggestions 'bout books or websites.

Just make sure you have a decent knowledge of algebra, functions, calculus and complex numbers. You'll learn about the content for Real and Complex Analysis in class...
 
Re: analysis suggetion

A pretty standard introduction to analysis textbook is the principle of mathematical analysis by Rudin. However I would say that this is pretty dense if you have not done any analysis before.

I remember I tried to do some advanced reading for my first course in analysis by Rudin and found it pretty tough (I couldn't really do it). It is a great book have later on though to use along side an analysis course.
 
Re: analysis suggetion

In complex analysis I suggest Fundamentals of complex analysis ... . It is one of the best books in complex analysis I have every read , even though I read around four but it is really really valuable . You just need to read the first 6 chapters until the end of applications of Residue theory . The book is easy to follow and it contains lots of good exercises .
 
Re: analysis suggetion

I suggest a recent book on analysis: Mathematical Analysis: A Concise Introduction. The author has taken great care in providing many aids in the first four chapters and only then began to remove the scaffolding.

While Rudin is a classic, let us not forget the mention in its preface that "it is meant for first year graduate or last year undergraduate students." Furthermore, most people who worked through this book did so with the help of a teacher, making it all more reasonable. Tackling Rudin by yourself is a pretty difficult, to say the least, enterprise.

Back to Schröder, it is a comprehensive book. You'll get exposure to all of analysis of one variable, including numerical methods (giving you a taste of numerical analysis), and then moving on to more general settings. The author has explicitly stated that the emphasis is on the methods of real analysis, particularly those that generalize to other contexts. Therefore, most of what you learn is applicable directly mutatis mutandis. I

f you are lacking in motivation, part three of the book is named Applied Analysis, furnishing many examples in diverse areas. It starts off with physics, going through harmonic oscillators, Maxwell's equations, heat equation and diffusion PDEs to name a few, passes by ordinary differential equations in Banach spaces and ends with the Finite Elements Method. He advises the interested readers to go straight to those chapters to have an idea of what can be done.

Amidst part one you have small bits of the theory of Lebesgue integration intervened with the Riemann-Stieltjes integral, showing you what are each strengths and providing insight of why certain definitions and theorems will appear in part two. Part two is where the generalization begins and you get to reap benefits from your efforts in analysis in one variable: he discusses vector spaces, metric spaces, normed spaces and inner product spaces. He gives a thorough explanation of metric spaces topology, which makes for a long but useful chapter. He then proceeds to construct measure spaces and integration in more abstract settings, but since you had such good guidance in one variable and given his focus on methods, many proofs are labelled "see theorem X.Y", and more often than not you will see it is almost copy and paste. In this part you will get a taste of Measure Theory, a slight Introduction to Differential Geometry and Hilbert Spaces, thus demonstrating how analysis isn't an island but a coherent continent connected with many areas of mathematics. (Happy)
 
Re: analysis suggetion

ZaidAlyafey said:
In complex analysis I suggest Fundamentals of complex analysis ... . It is one of the best books in complex analysis I have every read , even though I read around four but it is really really valuable . You just need to read the first 6 chapters until the end of applications of Residue theory . The book is easy to follow and it contains lots of good exercises .

I still have this textbook from when I took complex analysis a few years ago, and it has definitely served me well. (Smile)
 
Re: analysis suggetion

Prove It said:
Just make sure you have a decent knowledge of algebra, functions, calculus and complex numbers. You'll learn about the content for Real and Complex Analysis in class...

i am actually shifting on to mechanical engineering in my university education so i am not sure i will be taught real analysis in class
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K