MHB Real solution of the equation {x} = {x²} = {x³}

  • Thread starter Thread starter juantheron
  • Start date Start date
juantheron
Messages
243
Reaction score
1
Find all real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$.

My Try:
Let $\{x\} = \{x^2\} = \{x^3\} = k\;,$ where $k\in \mathbb{R}$ and $0\leq k<1$

Now we can write it as $x-\lfloor x \rfloor = x^2-\lfloor x^2 \rfloor = x^3-\lfloor x^2 \rfloor = k$

Now I did not Understand How can i proceed further.

Help me for solving above Question.

Thanks
 
Mathematics news on Phys.org
Re: Real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$

jacks said:
Find all real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$.

My Try:
Let $\{x\} = \{x^2\} = \{x^3\} = k\;,$ where $k\in \mathbb{R}$ and $0\leq k<1$

Now we can write it as $x-\lfloor x \rfloor = x^2-\lfloor x^2 \rfloor = x^3-\lfloor x^2 \rfloor = k$

Now I did not Understand How can i proceed further.

Help me for solving above Question.

Thanks

Let's define $x=i+f$ where $i$ is an integer and $0 \le f < 1$.

Then:
$$\{x\} = \{x^2\}$$
$$f = 2if + f^2$$
$$f^2 + f(2i-1) = 0$$
$$f = 0 \vee f = 1-2i$$
In other words, the only solutions occur when the fraction is 0.

... and all integers are solutions.
 
Re: Real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$

I like Serena said:
Let's define $x=i+f$ where $i$ is an integer and $0 \le f < 1$.

Then:
$$\{x\} = \{x^2\}$$
$$f = 2if + f^2$$
$\{x\} = \{x^2\}$ does not imply that $f^2 + f(2i-1) = 0$. I don't have suggestions at the moment, but there are many non-integer solutions.

[GRAPH]3eklechsml[/GRAPH]
 
Re: Real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$

Evgeny.Makarov said:
$\{x\} = \{x^2\}$ does not imply that $f^2 + f(2i-1) = 0$. I don't have suggestions at the moment, but there are many non-integer solutions.

Ah. You're right.
I see my mistake - it's right in my first step.

A proper solution for $\{x\}=\{x^2\}$ follows from $1+x=x^2 \Rightarrow x^2-x-1=0 \Rightarrow x=\frac 1 2 (\sqrt 5 + 1) \approx 1.618$.
It's the golden number!
 
It seems that $x^2=x+k$ for all $k\in\Bbb Z$ determines a solution of $\{x^2\}=\{x\}$, and solutions for $k=1,3,4,5,7,8,9,10,11,13,\dots$ are non-integer.
 
Evgeny.Makarov said:
It seems that $x^2=x+k$ for all $k\in\Bbb Z$ determines a solution of $\{x^2\}=\{x\}$, and solutions for $k=1,3,4,5,7,8,9,10,11,13,\dots$ are non-integer.

$x^2 = x + k$

then $k = x^2-x = x(x-1)$

so k can take all values and if it is n of the form n(n-1) then it is non - integer. n(n-1) shall give integers

as $n(n-1) + n = n^2$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top