MHB Real solution of the equation {x} = {x²} = {x³}

  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
The equation {x} = {x²} = {x³} leads to the conclusion that {x} can be expressed as k, where k is a real number between 0 and 1. By defining x as i + f, where i is an integer and 0 ≤ f < 1, the equation simplifies to f = 2if + f², yielding solutions when f = 0 or f = 1 - 2i. The discussion highlights that integer solutions exist, but also emphasizes the presence of many non-integer solutions. A significant non-integer solution identified is the golden ratio, approximately 1.618, which arises from the quadratic equation x² - x - 1 = 0. Overall, the exploration reveals a variety of solutions, both integer and non-integer, for the original equation.
juantheron
Messages
243
Reaction score
1
Find all real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$.

My Try:
Let $\{x\} = \{x^2\} = \{x^3\} = k\;,$ where $k\in \mathbb{R}$ and $0\leq k<1$

Now we can write it as $x-\lfloor x \rfloor = x^2-\lfloor x^2 \rfloor = x^3-\lfloor x^2 \rfloor = k$

Now I did not Understand How can i proceed further.

Help me for solving above Question.

Thanks
 
Mathematics news on Phys.org
Re: Real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$

jacks said:
Find all real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$.

My Try:
Let $\{x\} = \{x^2\} = \{x^3\} = k\;,$ where $k\in \mathbb{R}$ and $0\leq k<1$

Now we can write it as $x-\lfloor x \rfloor = x^2-\lfloor x^2 \rfloor = x^3-\lfloor x^2 \rfloor = k$

Now I did not Understand How can i proceed further.

Help me for solving above Question.

Thanks

Let's define $x=i+f$ where $i$ is an integer and $0 \le f < 1$.

Then:
$$\{x\} = \{x^2\}$$
$$f = 2if + f^2$$
$$f^2 + f(2i-1) = 0$$
$$f = 0 \vee f = 1-2i$$
In other words, the only solutions occur when the fraction is 0.

... and all integers are solutions.
 
Re: Real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$

I like Serena said:
Let's define $x=i+f$ where $i$ is an integer and $0 \le f < 1$.

Then:
$$\{x\} = \{x^2\}$$
$$f = 2if + f^2$$
$\{x\} = \{x^2\}$ does not imply that $f^2 + f(2i-1) = 0$. I don't have suggestions at the moment, but there are many non-integer solutions.

[GRAPH]3eklechsml[/GRAPH]
 
Re: Real solution of the equation $\{x\} = \{x^2\} = \{x^3\}$

Evgeny.Makarov said:
$\{x\} = \{x^2\}$ does not imply that $f^2 + f(2i-1) = 0$. I don't have suggestions at the moment, but there are many non-integer solutions.

Ah. You're right.
I see my mistake - it's right in my first step.

A proper solution for $\{x\}=\{x^2\}$ follows from $1+x=x^2 \Rightarrow x^2-x-1=0 \Rightarrow x=\frac 1 2 (\sqrt 5 + 1) \approx 1.618$.
It's the golden number!
 
It seems that $x^2=x+k$ for all $k\in\Bbb Z$ determines a solution of $\{x^2\}=\{x\}$, and solutions for $k=1,3,4,5,7,8,9,10,11,13,\dots$ are non-integer.
 
Evgeny.Makarov said:
It seems that $x^2=x+k$ for all $k\in\Bbb Z$ determines a solution of $\{x^2\}=\{x\}$, and solutions for $k=1,3,4,5,7,8,9,10,11,13,\dots$ are non-integer.

$x^2 = x + k$

then $k = x^2-x = x(x-1)$

so k can take all values and if it is n of the form n(n-1) then it is non - integer. n(n-1) shall give integers

as $n(n-1) + n = n^2$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
943
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K