Real Solutions for 4x^2-40x+51=0 and 4x^2-40[x]+51=0

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the equation \(4x^2 - 40\lfloor{x}\rfloor + 51 = 0\) for real solutions. Participants confirm the correct approach to finding solutions and acknowledge contributions from members. The equation involves the floor function, which adds complexity to the solution process. The final solutions are derived by analyzing the quadratic nature of the equation in conjunction with the properties of the floor function.

PREREQUISITES
  • Understanding of quadratic equations
  • Familiarity with the floor function in mathematics
  • Knowledge of real number properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of the floor function in mathematical equations
  • Learn how to solve quadratic equations with variable coefficients
  • Explore numerical methods for finding roots of equations
  • Investigate piecewise functions and their applications
USEFUL FOR

Mathematicians, educators, students studying algebra, and anyone interested in solving complex equations involving floor functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.
 
Mathematics news on Phys.org
anemone said:
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.

First $4x^2+ 51$ is positive. So x has to be positive else the sum is positive
we have $4x^2 - 40 \lfloor x \rfloor + 51 = 0$ => $4x^2 - 40 x + 51 <= 0$ equal only when x is integer and $4(x+1)^2 - 40 x + 51 >0$
$4x^2- 40 x + 51 < 0$
$=> 2(x-5)^2 < 49$
or $=> (x-5) < 3.5$
$=> x < 8.5$
$4(x+1)^2 - 40 x + 51 >0$
$=>4x^2 - 32 x + 55 >0$
$=>4(x - 4)^2 >9$
$=>x > 6.25$
So we seek solution for $\lfloor x \rfloor$ = 6 or 7 or 8
for $6 , 4x^2 = 240-51 = 189$ A solution
for $7, 4x^2 = 229$ A solution
for $8, 4x^2 = 269$ A solution
so solutions are $\frac{\sqrt{189}}{2},\frac{\sqrt{229}}{2}, \frac{\sqrt{269}}{2}$
 
Hi kaliprasad,

Nice try but the solutions aren't complete...:(
 
anemone said:
Hi kaliprasad,

Nice try but the solutions aren't complete...:(

you are right. my mistake

Forgot the solution to the left

$4(x-4)^2 > 9$ also gives $x < 2.5$
$2(x-5)^2 <49$ give $x > 1.5$
so take $\lfloor x\rfloor =2$ to get $4x^2 = 29$ which gives another solution $\frac{\sqrt{29}}{2}$
 
anemone said:
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.

As noted by kaliprasad, $x$ is positive.

If $m=\lfloor x\rfloor$ then $x=m+c$ for some $0\le c<1$, so we have

$$4(m+c)^2-40m+51=0$$

$$4m^2+8mc+4c^2-40m+51=0\implies4m^2-40m+51=-8mc-4c^2$$

As $m$ and $c$ are both positive, all possible $m$ are integers between the zeros of $4m^2-40m+51=0$.

This gives $m=2,3,4,5,6,7,8$ to check, so we have

$4x^2=29$
$4x^2=69$
$4x^2=109$
$4x^2=149$
$4x^2=189$
$4x^2=229$
$4x^2=269$

Solving the above equations for $x$ and substituting into the original equation we find solutions at

$$x\in\left\{\dfrac{\sqrt{29}}{2},\dfrac{\sqrt{189}}{2},\dfrac{\sqrt{229}}{2},\dfrac{\sqrt{269}}{2}\right\}$$
 
Good job to both of you! And thanks for participating!:cool:
 

Similar threads

Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K