MHB Real Solutions for 4x^2-40x+51=0 and 4x^2-40[x]+51=0

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.
 
Mathematics news on Phys.org
anemone said:
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.

First $4x^2+ 51$ is positive. So x has to be positive else the sum is positive
we have $4x^2 - 40 \lfloor x \rfloor + 51 = 0$ => $4x^2 - 40 x + 51 <= 0$ equal only when x is integer and $4(x+1)^2 - 40 x + 51 >0$
$4x^2- 40 x + 51 < 0$
$=> 2(x-5)^2 < 49$
or $=> (x-5) < 3.5$
$=> x < 8.5$
$4(x+1)^2 - 40 x + 51 >0$
$=>4x^2 - 32 x + 55 >0$
$=>4(x - 4)^2 >9$
$=>x > 6.25$
So we seek solution for $\lfloor x \rfloor$ = 6 or 7 or 8
for $6 , 4x^2 = 240-51 = 189$ A solution
for $7, 4x^2 = 229$ A solution
for $8, 4x^2 = 269$ A solution
so solutions are $\frac{\sqrt{189}}{2},\frac{\sqrt{229}}{2}, \frac{\sqrt{269}}{2}$
 
Hi kaliprasad,

Nice try but the solutions aren't complete...:(
 
anemone said:
Hi kaliprasad,

Nice try but the solutions aren't complete...:(

you are right. my mistake

Forgot the solution to the left

$4(x-4)^2 > 9$ also gives $x < 2.5$
$2(x-5)^2 <49$ give $x > 1.5$
so take $\lfloor x\rfloor =2$ to get $4x^2 = 29$ which gives another solution $\frac{\sqrt{29}}{2}$
 
anemone said:
Find all real solutions for the system $$4x^2-40\left\lfloor{x}\right\rfloor+51=0$$.

As noted by kaliprasad, $x$ is positive.

If $m=\lfloor x\rfloor$ then $x=m+c$ for some $0\le c<1$, so we have

$$4(m+c)^2-40m+51=0$$

$$4m^2+8mc+4c^2-40m+51=0\implies4m^2-40m+51=-8mc-4c^2$$

As $m$ and $c$ are both positive, all possible $m$ are integers between the zeros of $4m^2-40m+51=0$.

This gives $m=2,3,4,5,6,7,8$ to check, so we have

$4x^2=29$
$4x^2=69$
$4x^2=109$
$4x^2=149$
$4x^2=189$
$4x^2=229$
$4x^2=269$

Solving the above equations for $x$ and substituting into the original equation we find solutions at

$$x\in\left\{\dfrac{\sqrt{29}}{2},\dfrac{\sqrt{189}}{2},\dfrac{\sqrt{229}}{2},\dfrac{\sqrt{269}}{2}\right\}$$
 
Good job to both of you! And thanks for participating!:cool:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top