Rearranging formula using logarithms

AI Thread Summary
The discussion revolves around rearranging a formula using logarithms to solve for time in a capacitor circuit. The original formula, t = -RC ln(1 - I/6.7), was questioned due to discrepancies in calculated values, specifically yielding 326 milliseconds instead of the expected 750 milliseconds. The error was traced back to using the wrong logarithm function on the calculator; the participant had used LOG instead of LN. Once the correct function was applied, the calculations aligned with expectations, resolving the confusion. The participant expressed gratitude for the clarification, highlighting the importance of understanding logarithmic functions in mathematical problem-solving.
Mr_Mole
Messages
6
Reaction score
3
Homework Statement
I have a homework where I need to use logarithms to make an unknown the subject of a given formula. I know the answer I need (different values in the formula till one worked) but I can’t show how it’s done using logs.

If the flow of current (i), Amperes, in a capacitor at time (t), seconds, increases at an exponential according to the equation below:
i=6.7(1-e^(-t⁄RC) )
The resistance of the circuit is 28kΩ and the capacitance is 15µF.
Calculate the current after 750ms
Calculate the time for the current to reach 5A.
Relevant Equations
i=6.7(1-e^(-t⁄RC) )
My attempt that doesn’t work. t=-RC ln(1-I/6.7)
 
Physics news on Phys.org
Your "attempt that doesn't work" looks correct to me. To show why this is true via logarithms you'll need to use the idea that ln(e^x)=x for x>0. In other words, make e^x the subject of the equation and then take the natural log of both sides.
 
  • Like
Likes DaveE and topsquark
It looks good to me also. Why do you think it's not correct?
 
What is the answer supposed to be?
 
DaveE said:
It looks good to me also. Why do you think it's not correct?
Because when I put values into it then I get the wrong answer. Using the information given in the question I get an answer of 5.576A for the first part. Putting that into the rearranged formula gives me a t value of 326milliseconds instead of 750milliseconds.
 
Mr_Mole said:
Because when I put values into it then I get the wrong answer. Using the information given in the question I get an answer of 5.576A for the first part. Putting that into the rearranged formula gives me a t value of 326milliseconds instead of 750milliseconds.
How are you getting 326ms?
 
DaveE said:
It looks good to me also. Why do you think it's not correct?
Mr_Mole said:
Homework Statement: I have a homework where I need to use logarithms to make an unknown the subject of a given formula. I know the answer I need (different values in the formula till one worked) but I can’t show how it’s done using logs.

If the flow of current (i), Amperes, in a capacitor at time (t), seconds, increases at an exponential according to the equation below:
i=6.7(1-e^(-t⁄RC) )
The resistance of the circuit is 28kΩ and the capacitance is 15µF.
Calculate the current after 750ms
Calculate the time for the current to reach 5A.
Relevant Equations: i=6.7(1-e^(-t⁄RC) )

My attempt that doesn’t work. t=-RC ln(1-I/6.7)
I’m not expecting the current to be 5A at 750ms. When rearranged to make t the subject, I would expect t to be 750ms when I input the current obtained when i is the subject. That was around 5.6A. I’m getting 325ms out which led me to believe it was incorrect. This aspect of maths baffles me hence how I ended up here relying on the kindness of helpful strangers with bigger brains than I.
 
Mr_Mole said:
I’m not expecting the current to be 5A at 750ms. When rearranged to make t the subject, I would expect t to be 750ms when I input the current obtained when i is the subject. That was around 5.6A. I’m getting 325ms out which led me to believe it was incorrect. This aspect of maths baffles me hence how I ended up here relying on the kindness of helpful strangers with bigger brains than I.
Can you explain how you are getting times of 325ms or 326ms?
 
Mr_Mole said:
I’m getting 325ms out
One of the more frequent mishaps: you used LOG on your calculator instead of LN

:smile:

##\ ##
 
  • Like
  • Informative
Likes berkeman, nasu, Mr_Mole and 1 other person
  • #10
YouAreAwesome said:
Can you explain how you are getting times of 325ms or 326ms?
I input the values into the rearranged equation. Using the same values given and the original answer I would expect to get the original i value returned to prove I had rearranged correctly. Unless I’m missing a step somewhere in the process and doing the rearranged equation incorrectly.
 
  • #11
BvU said:
One of the more frequent mishaps: you used LOG on your calculator instead of LN

:smile:

##\ ##
We have a winner! If only the maths tutor had explained that. No mention of an ln button. It comes out correct now. You are my hero! It was driving me mad last night as I couldn’t see the error. I will sleep well tonight!
 
  • Like
Likes berkeman and BvU
  • #12
Mr_Mole said:
I input the values into the rearranged equation. Using the same values given and the original answer I would expect to get the original i value returned to prove I had rearranged correctly. Unless I’m missing a step somewhere in the process and doing the rearranged equation incorrectly.
Thank you for helping. It’s been pointed out I didn’t know the existence of the ln button. I blame the tutor for not explain that one.
 
Back
Top