MHB Reconciling Awodey, Aluffi & Leinster's Products as Categories

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
The discussion focuses on reconciling the differing approaches to product categories in the works of Awodey, Aluffi, and Leinster. While all authors share the same "official" definition of a product, they present it through varying examples and contexts. The universal mapping property is highlighted as a crucial aspect of product definitions across these texts. Awodey's treatment of product categories as Cartesian products raises questions about the categorization of objects within the category of categories, which remains unexplored. Overall, the conversation seeks clarity on how these approaches can be aligned despite apparent differences.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
The books by Awodey, Aluffi and Leinster have different approaches to the construction of a product category ... at least Awodey seems to differ from the approach of Aluffi and Leinster ...

Can someone explain how to reconcile the approach of Awodey with the approach of Aluffi/Leinster ... presumably the two approaches are actually the same ...

The books I am referring to are as follows:

Algebra: Chapter 0 by Paolo Aluffi

Category Theory by Steve Awodey

Basic Category Theory by Tom LeinsterThe approaches to the construction of a product category are as follows:

Awodey

https://www.physicsforums.com/attachments/8361
https://www.physicsforums.com/attachments/8362Aluffi

View attachment 8363Leinster

View attachment 8364
View attachment 8365
As I mentioned above ... my question is as follows:

How do we reconcile the approach of Awodey to the construction of a product category with the approach of Aluffi/Leinster ... ?
Hope someone can help ...

Peter
 
Physics news on Phys.org
Basically, you are mixing up theory and examples. The “official” definition of the product of two (or more) objects in a category is for all authors the same, as is should be. Compare:

Leinster, definition 5.1.1. page 108
Awodey, definition 2.15. page 39
Simmons, definition 2.5.2. page 50
Adamek, definition 10.19. page 168
The most important feature of a product is the universal mapping property.
Allufi: you mentioned section 5.4. on page 35 of Aluffi. Here he defines the universal mapping propery in an example using sets. Replacing “set” with “object”, you get an “official” definition of the universal property and the product. He does not state that definition explicitly (I could not find it) which is strange, because he mentions the definition of a coproduct on page 36.

Then there is the product of two categories $C$ and $D$, Awodey 1.6. page 14. This product is defined as a Cartesian product. Why aren’t the categories $C$ and $D$ considered as objects in $CAT$, the category of categories, and the product of $C$ and $D$ defined using the universal property ?. I do not know. Maybe someone who knows something of categories can answer this.
 
steenis said:
Basically, you are mixing up theory and examples. The “official” definition of the product of two (or more) objects in a category is for all authors the same, as is should be. Compare:

Leinster, definition 5.1.1. page 108
Awodey, definition 2.15. page 39
Simmons, definition 2.5.2. page 50
Adamek, definition 10.19. page 168
The most important feature of a product is the universal mapping property.
Allufi: you mentioned section 5.4. on page 35 of Aluffi. Here he defines the universal mapping propery in an example using sets. Replacing “set” with “object”, you get an “official” definition of the universal property and the product. He does not state that definition explicitly (I could not find it) which is strange, because he mentions the definition of a coproduct on page 36.

Then there is the product of two categories $C$ and $D$, Awodey 1.6. page 14. This product is defined as a Cartesian product. Why aren’t the categories $C$ and $D$ considered as objects in $CAT$, the category of categories, and the product of $C$ and $D$ defined using the universal property ?. I do not know. Maybe someone who knows something of categories can answer this.

Thanks for the above post, steenis ...

I am still reflecting on it ... and the category of Product and Coproduct ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K