MHB Rectangles & Squares - Finding a Numerical Measure

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Squares
Click For Summary
A numerical measure to determine how close a rectangle is to a square can be based on the ratio of its sides, with a ratio of 1 indicating a square. This measure is effective as it maintains consistency for similar rectangles. For parallelograms, the formula 4A/(a+b)² can be used, yielding a value of 1 for squares and less than 1 for non-square parallelograms. Additionally, angles can be incorporated into a measure that combines the deviation from 90 degrees and the difference between the longest and shortest sides. These methods provide a way to quantify the similarity of rectangles and parallelograms to squares.
Yankel
Messages
390
Reaction score
0
Hello

I am looking for a mathematical measure, that will tell me, numerically, how far is any rectangle from a being a square.
One obvious measure is the ratio between the sides of the rectangle. If the ratio is 1, it is a square. This measure is good, as it preserves a very important characteristic, which is, for similar rectangles, we will get the same measure.

I am looking for other measures such as the ratio, that will allow me to sort rectangles by how close they are to the form of a square, while preserving this characteristic of similar rectangles gets the same numerical value. In addition, is there such a measure for parallelograms ? That will tell me how far are they from a square?

Thank you in advance.
 
Mathematics news on Phys.org
Yankel said:
Hello

I am looking for a mathematical measure, that will tell me, numerically, how far is any rectangle from a being a square.
One obvious measure is the ratio between the sides of the rectangle. If the ratio is 1, it is a square. This measure is good, as it preserves a very important characteristic, which is, for similar rectangles, we will get the same measure.

I am looking for other measures such as the ratio, that will allow me to sort rectangles by how close they are to the form of a square, while preserving this characteristic of similar rectangles gets the same numerical value. In addition, is there such a measure for parallelograms ? That will tell me how far are they from a square?

Thank you in advance.
For a parallelogram with sides $a$ and $b$ and area $A$, you could use the measure $\dfrac{4A}{(a+b)^2}$. That will be $1$ if the parallelogram is a square, but smaller than $1$ for any nonsquare parallelogram. Also, it will give the same measure for similar parallelograms.
 
Thank you, great idea !

Can I also use angles for this purpose ?
 
Yankel said:
Thank you, great idea !

Can I also use angles for this purpose ?

Sure.
To make a parallellogram a square, we need both square angles and equal sides.
We can combine that in one measure with for instance:
$$ (\text{any angle} - 90^\circ)^2 + (\text{longest side} - \text{shortest side})^2$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
16K
  • · Replies 1 ·
Replies
1
Views
2K