MHB Rectangles & Squares - Finding a Numerical Measure

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Squares
AI Thread Summary
A numerical measure to determine how close a rectangle is to a square can be based on the ratio of its sides, with a ratio of 1 indicating a square. This measure is effective as it maintains consistency for similar rectangles. For parallelograms, the formula 4A/(a+b)² can be used, yielding a value of 1 for squares and less than 1 for non-square parallelograms. Additionally, angles can be incorporated into a measure that combines the deviation from 90 degrees and the difference between the longest and shortest sides. These methods provide a way to quantify the similarity of rectangles and parallelograms to squares.
Yankel
Messages
390
Reaction score
0
Hello

I am looking for a mathematical measure, that will tell me, numerically, how far is any rectangle from a being a square.
One obvious measure is the ratio between the sides of the rectangle. If the ratio is 1, it is a square. This measure is good, as it preserves a very important characteristic, which is, for similar rectangles, we will get the same measure.

I am looking for other measures such as the ratio, that will allow me to sort rectangles by how close they are to the form of a square, while preserving this characteristic of similar rectangles gets the same numerical value. In addition, is there such a measure for parallelograms ? That will tell me how far are they from a square?

Thank you in advance.
 
Mathematics news on Phys.org
Yankel said:
Hello

I am looking for a mathematical measure, that will tell me, numerically, how far is any rectangle from a being a square.
One obvious measure is the ratio between the sides of the rectangle. If the ratio is 1, it is a square. This measure is good, as it preserves a very important characteristic, which is, for similar rectangles, we will get the same measure.

I am looking for other measures such as the ratio, that will allow me to sort rectangles by how close they are to the form of a square, while preserving this characteristic of similar rectangles gets the same numerical value. In addition, is there such a measure for parallelograms ? That will tell me how far are they from a square?

Thank you in advance.
For a parallelogram with sides $a$ and $b$ and area $A$, you could use the measure $\dfrac{4A}{(a+b)^2}$. That will be $1$ if the parallelogram is a square, but smaller than $1$ for any nonsquare parallelogram. Also, it will give the same measure for similar parallelograms.
 
Thank you, great idea !

Can I also use angles for this purpose ?
 
Yankel said:
Thank you, great idea !

Can I also use angles for this purpose ?

Sure.
To make a parallellogram a square, we need both square angles and equal sides.
We can combine that in one measure with for instance:
$$ (\text{any angle} - 90^\circ)^2 + (\text{longest side} - \text{shortest side})^2$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top