MHB Redundancy in Question about Linear Transformations

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Take a look at this question.

Show that if two linear transformations \(f,\,g\) of rank 1 have equal \(\mbox{Ker f}=\mbox{Ker g},\,\mbox{Im f}=\mbox{Im g},\) then \(fg=gf\).

Now the problem is that I feel this question is not properly worded. If the linear transformations have rank = 1 then it is obvious that \(\mbox{Im f}=\mbox{Im g}=\{0\}\). So restating that is not needed. Don't you think so? Correct me if I am wrong. If I am correct the answer is also obvious. Since the image space of the linear transformations contain only the identity element, \(fg=gf\).
 
Physics news on Phys.org
A linear transformation of rank 1 maps to a 1-dimensional subspace of the co-domain (which is isomorphic to the underlying field, at least as a vector space). The trivial subspace $\{0\}$ has null basis (and thus 0 dimension), as it is ALWAYS a linearly dependent set.

Two such functions need not have the same image, consider $f,g:\Bbb R^2 \to \Bbb R^2$:

$f(x,y) = (x,0)$

$g(x,y) = (0,y)$.
 
Deveno said:
A linear transformation of rank 1 maps to a 1-dimensional subspace of the co-domain (which is isomorphic to the underlying field, at least as a vector space). The trivial subspace $\{0\}$ has null basis (and thus 0 dimension), as it is ALWAYS a linearly dependent set.

Two such functions need not have the same image, consider $f,g:\Bbb R^2 \to \Bbb R^2$:

$f(x,y) = (x,0)$

$g(x,y) = (0,y)$.

Thanks very much. I don't know, but somehow I have forgotten that the trivial subspace has null basis and zero dimension. :o Back to the square one.
 
Hi everyone, :)

Do you have any ideas how to use the fact that \(\mbox{Ker f}=\mbox{Ker g}\) in this question? I am finding it hard to see how this fact could be connected to the question. My initial thought was to use the Homomophism theorem for vector spaces, however I don't see how it could be linked. Let me write down what I did for the moment,

It is given that, \(\mbox{rank f} = \mbox{rank g} = 1\)

Then, \(\mbox{Im f} = \mbox{Im g} = <u>\) where each element of I am f and I am g can be written as a scaler multiple of \(u\). Now consider \(fg(v)\) and \(gf(v)\) for any \(v\in\mbox{Im f}=\mbox{Im g}\).

\[fg(v)=f[g(v)]=f(ku)=kf(u)=(kl)u\]

where \(k\mbox{ and }l\) are scalers. Similarly,

\[gf(v)=(mn)u\]

Therefore, \(fg(v)=\lambda \,gf(v)\) where \(\lambda = \lambda (v)\)

What I feel is that if I could use the fact that \(\mbox{Ker f}=\mbox{Ker g}\) then I might be able to show that \(\lambda=1\). What do you think? :)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top