In MULTIPLE linear regression, is it still true that the regression sum of squares is equal to(adsbygoogle = window.adsbygoogle || []).push({});

∑ (Y_i hat -Y bar)^2 ???

My textbook defines regression SS in the chapters for simple linear regression as ∑ (Y_i hat -Y bar)^2, and then in the chapters for multiple linear regression, the regression SS is defined in MATRIX form, and it did not say anywhere whether it is still equal to ∑ (Y_i hat -Y bar)^2 or not, so I am confused...

If it is still equal to ∑ (Y_i hat -Y bar)^2 in MULTIPLE linear regression (this is such a simple formula), what is the whole point of expressing the regression SS in terms of matrices in mutliple linear regression? I don't see any point of doing so when the formula ∑ (Y_i hat -Y bar)^2 is already so simple. There is no need to develop additional headaches...

Thanks for explaining!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Regression SS in multiple linear regression

**Physics Forums | Science Articles, Homework Help, Discussion**