I Reichenbach Synchronisation: Proving i=r

Click For Summary
Reichenbach synchronization is utilized to demonstrate that the average round trip speed of light remains constant at c, regardless of the chosen value of epsilon. The goal is to prove that the angle of incidence equals the angle of reflection (i = r), but using Huyghens leads to differing results. The transformation between Minkowski and Anderson coordinates shows that while temporal coordinates are affected, spatial coordinates remain unchanged, supporting the conclusion that angles remain consistent. A link to further information on Anderson coordinates is provided. The discussion emphasizes the relationship between light speed, coordinate transformations, and angle consistency in physics.
wnvl2
Messages
62
Reaction score
14
I use Reichenbach synchronisation. The one-way speed of light (OWSOL) in the x and y-direction is ##\frac{c}{2\epsilon}## and in the reverse direction it is for both ##\frac{c}{2(1-\epsilon)}## such that the average round trip speed of light is ##c##. For any choice of ##\epsilon## the physical laws should remain the sames as for ##\epsilon = \frac{1}{2}##.

My goal is to prove that the angle of incidence equals the angle of reflection. When using Huyghens it is obvous that I get a different result.

How can I prove ##i = r##?
mirror.png
 
Last edited:
Physics news on Phys.org
I use units where ##c=1## and Anderson coordinates so ##\kappa=2 \epsilon-1##. The transform between Minkowski coordinates (lower case) and Anderson coordinates (upper case) is: $$ t=T+\kappa X$$ $$x=X$$ $$y=Y$$ $$z=Z$$

So, in the Minkowski coordinates we can write the equation of an ingoing null geodesic as $$r^\mu(t,x,y,z) = \left( \lambda, -\frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$ for ##\lambda<0## and the equation of an outgoing null geodesic as $$r^\mu(t,x,y,z) = \left( \lambda, \frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$ for ##0<\lambda##.

Then transforming from the Minkowski coordinates to the Anderson coordinates we get $$r^\mu(T,X,Y,Z) = \left( \lambda + \frac{\kappa\lambda}{\sqrt{2}} , -\frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$ and $$r^\mu(T,X,Y,Z) = \left( \lambda - \frac{\kappa\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} , \frac{\lambda}{\sqrt{2}} ,0 \right)$$

So the transformation does not affect the spatial coordinates, just the temporal coordinate. So the angle is the same in both cases.
 
  • Like
Likes cianfa72 and wnvl2
Do you have a link about "Anderson coordinates"?
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
6K
  • · Replies 93 ·
4
Replies
93
Views
5K
Replies
15
Views
2K
Replies
11
Views
1K
  • · Replies 127 ·
5
Replies
127
Views
9K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
2K