I Relating orthogonal accelerations in special relativity

LightPhoton
Messages
42
Reaction score
3
TL;DR Summary
Reasoning for the validity of relation between orthogonal accelerations in special relativity
We want to relate acceleration in two frames, an inertial frame S, and the instantaneous inertial reference frame of the particle on which it is being accelerated, S', which is moving in the ##x## direction at the moment. Let the acceleration in S be ##(a_x,a_y)## and in S' be ##(a_x',a_y')##. We want a relationship between them.

Now, here Morin argues that when consider the ##y## component we can write ##dy=dy'## and that ##dt'=dt/\gamma##, thus

$$a_y'=d^2y'/dt'^2=d^2y/(dt/\gamma)^2=\gamma^2a_y\tag1$$

But this seems wrong since we are taking the derivative of a factor of ##\gamma## here. If we go into a bit more detail then,


$$a_y=\frac{d^2y}{dt^2}=\frac d{dt}\bigg(\frac{dy'}{\gamma dt'}\bigg)=\frac1{\gamma^2}a_y'+\underbrace{\frac{dy'}{dt'}}_{v'}\frac d{dt}\bigg(\frac1{\gamma}\bigg)$$

but since the particle is at rest with respect to itself ##(v'=0)##, the second term goes to zero and we get ##(1)##. Is this reasoning correct?
 
Last edited:
Physics news on Phys.org
I think you are applying the chain rule here, and I agree that's the formally correct approach. However note that the structure of the Lorentz transforms, which are aligned parallel to the x axis, tells you that the velocity of the particle is parallel to x (otherwise you couldn't use these transforms to reach its rest frame). Hence ##dy/dt=0## in any frame, not just the rest frame.

I think that's why Morin is taking a shortcut here.
 
  • Like
Likes LightPhoton
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top