Sagittarius A-Star said:
=> The proper acceleration of the block is ##\alpha = \gamma^2 a##.
I concur, though I used a different method to compute the same result.
Sagittarius A-Star said:
The four-force from the block is
The force is not at a point, but it is distributed over some area. The area the force is distributed over is not the same in the rocket frame and the block frame. This happens because of the relativity of simultaneity. To get the total force, one has to integrate the force/unit area over the contact area at some particular "instant of time". Because of the relativity of simlutaneity, the concept of "an instant of time" is frame dependent. As a consequence, the contact area at some particular "instant of time" is also frame dependent, it is different in the block frame and in the rocket frame.
To accommodate the fact that the force is distributed, rather than occurring at a point (as is the case for a four-force), one can use the notion of the stress-energy tensor. Certain components of this tensor mathematically model force/unit area. These are the "pressure" terms in the stress-energy tensor. This may not make much sense if you are not familiar with the stress energy tensor, I suppose.
The stress-energy tensor components transform in a known manner. In the limit of a thin block, we can use the Lorentz transform to do this transformation. The stress-energy tensor is not a vector (a rank 1 tensor), but rather is a rank 2 tensor. It turns out, though, that the vertical component of the pressure in the SET is the same in both the rocket frame and the block frame, because of the appropriate transformation laws, which is rather convenient.
The end result of this process is the same result you get, it's just a different (and IMO better) way of looking at what's happening. It's better because the SET models a distribute force. However, some familiarity with the stress-energy tensor is required for this viewpoint to be useful, I suppose.