MHB Relation between Hermite and associated Laguerre

  • Thread starter Thread starter Suvadip
  • Start date Start date
  • Tags Tags
    Laguerre Relation
Suvadip
Messages
68
Reaction score
0
Please help me in in proving the relation between H2n(x) and Ln(-1/2)(x2) where Hn(x) is the Hermite polynomial and Ln(-1/2)(x) is associated Laguerre polynomial.
 
Physics news on Phys.org
Hi Suvadip! :D

Are you familiar with "n-th derivative" definitions of the Hermite and Laguerre polynomials? The standard definition for the Laguerre polynomials is

$$\mathcal{L}_n(x)=\frac{e^x}{n!}\,\frac{d^n}{dx^n}[e^{-x}x^n]$$

although you do also occasionally come across the alternate form

$$ \mathcal{L}_n(x)=e^x\,\frac{d^n}{dx^n}[e^{-x}x^n]$$

The latter definition omits the scale factor $$1/{n!}\,$$ and so modifies the recurrence relations...On the other hand, the Hermite polynomials have the analogous definition:

$$\mathcal{H}_n(x)=(-1)^n\,e^{x^2}\,\frac{d^n}{dx^n}[e^{-x^2}]$$

You might try differentiating all 3 definitions - it's good practice! - and then see what happens... ;)

Also, you might consider expressing the terms to be n-differentiated as a power series, differentiating, multiplying back with the remainder of the function (in each respective function definition), and then compare the coefficients for all three results...Bets of luck! :D

- - - Updated - - -

Think fractional integration, that'd be my guess...
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top