Relativistic particle moving in a potential

PhysicsRock
Messages
121
Reaction score
19
Homework Statement
Consider a relativistic particle of mass ##m_0## in ##(1+1)##-spacetime dimensions. In an inertial frame of reference with spacetime coordinates ##(t,x)##, we define the potential as ##V(x) = \alpha x## with ##\alpha > 0##. The particle is at rest at time ##t=0## and it's position is ##x(0) = 0##. Determine the trajectory ##x(t)## of the particle.
Hint: Use the conservation of total energy.
Relevant Equations
##E_\text{tot} = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x##
Since energy is conserved and the particle is initially at rest, we can determine that ##E(0) = m_0 c^2##, so

$$
m_0 c^2 = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x.
$$

Squaring this eqation gives

$$
m_0^2 c^4 = \alpha^2 x^2 + c^2 p^2 + m_0^2 c^4 + 2 \alpha x \sqrt{ c^2 p^2 + m_0^2 c^4 }
\Rightarrow 0 = \alpha^2 x^2 + c^2 p^2 + 2 \alpha x ( E - \alpha x ).
$$

Using ##p = \gamma m_0 \dot{x}##, I was able to simplify this equation to

$$
0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x
$$

This is the point where I'm stuck. I have doubled checked and I'm pretty sure that this final expression is correct, however, I cannot guarantee that it actually is. If it is, I have no clue how to solve this equation.
 
Physics news on Phys.org
PhysicsRock said:
$$0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x$$
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
 
  • Like
  • Informative
Likes vanhees71, PhysicsRock, topsquark and 1 other person
renormalize said:
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
Thank you for the hint. I'll try to solve it.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top