Relativistic particle moving in a potential

Click For Summary
The discussion focuses on the energy conservation of a relativistic particle initially at rest, leading to the equation m_0 c^2 = √(c^2 p^2 + m_0^2 c^4) + αx. After squaring and simplifying, the participant arrives at the equation 0 = -α^2 x^2 + (E^2 ẋ^2)/(c^2 - ẋ^2) + 2αEx, expressing uncertainty about its correctness and how to solve it. Another participant confirms the expression's validity and suggests solving for ẋ to rewrite it in the form ẋ = f(x), followed by integrating both sides. The conversation emphasizes the importance of integration in resolving the final expression.
PhysicsRock
Messages
121
Reaction score
19
Homework Statement
Consider a relativistic particle of mass ##m_0## in ##(1+1)##-spacetime dimensions. In an inertial frame of reference with spacetime coordinates ##(t,x)##, we define the potential as ##V(x) = \alpha x## with ##\alpha > 0##. The particle is at rest at time ##t=0## and it's position is ##x(0) = 0##. Determine the trajectory ##x(t)## of the particle.
Hint: Use the conservation of total energy.
Relevant Equations
##E_\text{tot} = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x##
Since energy is conserved and the particle is initially at rest, we can determine that ##E(0) = m_0 c^2##, so

$$
m_0 c^2 = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x.
$$

Squaring this eqation gives

$$
m_0^2 c^4 = \alpha^2 x^2 + c^2 p^2 + m_0^2 c^4 + 2 \alpha x \sqrt{ c^2 p^2 + m_0^2 c^4 }
\Rightarrow 0 = \alpha^2 x^2 + c^2 p^2 + 2 \alpha x ( E - \alpha x ).
$$

Using ##p = \gamma m_0 \dot{x}##, I was able to simplify this equation to

$$
0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x
$$

This is the point where I'm stuck. I have doubled checked and I'm pretty sure that this final expression is correct, however, I cannot guarantee that it actually is. If it is, I have no clue how to solve this equation.
 
Physics news on Phys.org
PhysicsRock said:
$$0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x$$
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
 
  • Like
  • Informative
Likes vanhees71, PhysicsRock, topsquark and 1 other person
renormalize said:
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
Thank you for the hint. I'll try to solve it.
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K