Relativistic particle moving in a potential

PhysicsRock
Messages
121
Reaction score
19
Homework Statement
Consider a relativistic particle of mass ##m_0## in ##(1+1)##-spacetime dimensions. In an inertial frame of reference with spacetime coordinates ##(t,x)##, we define the potential as ##V(x) = \alpha x## with ##\alpha > 0##. The particle is at rest at time ##t=0## and it's position is ##x(0) = 0##. Determine the trajectory ##x(t)## of the particle.
Hint: Use the conservation of total energy.
Relevant Equations
##E_\text{tot} = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x##
Since energy is conserved and the particle is initially at rest, we can determine that ##E(0) = m_0 c^2##, so

$$
m_0 c^2 = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x.
$$

Squaring this eqation gives

$$
m_0^2 c^4 = \alpha^2 x^2 + c^2 p^2 + m_0^2 c^4 + 2 \alpha x \sqrt{ c^2 p^2 + m_0^2 c^4 }
\Rightarrow 0 = \alpha^2 x^2 + c^2 p^2 + 2 \alpha x ( E - \alpha x ).
$$

Using ##p = \gamma m_0 \dot{x}##, I was able to simplify this equation to

$$
0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x
$$

This is the point where I'm stuck. I have doubled checked and I'm pretty sure that this final expression is correct, however, I cannot guarantee that it actually is. If it is, I have no clue how to solve this equation.
 
Physics news on Phys.org
PhysicsRock said:
$$0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x$$
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
 
  • Like
  • Informative
Likes vanhees71, PhysicsRock, topsquark and 1 other person
renormalize said:
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
Thank you for the hint. I'll try to solve it.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top