Relativistic particle moving in a potential

Click For Summary
SUMMARY

The discussion focuses on solving the equation for a relativistic particle moving in a potential, specifically the expression derived from energy conservation: $$0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x$$. The participant confirmed the correctness of this expression and outlined a method for solving it through integration. The steps include solving for ##\dot{x}##, rewriting the equation in the form of ##\frac{dx}{f(x)}=dt##, and integrating both sides. This systematic approach is essential for obtaining the solution.

PREREQUISITES
  • Understanding of relativistic mechanics, specifically the concepts of energy and momentum.
  • Familiarity with the Lorentz factor, denoted as ##\gamma##.
  • Knowledge of calculus, particularly integration techniques.
  • Basic understanding of potential energy in physics.
NEXT STEPS
  • Study the derivation and application of the Lorentz factor in relativistic equations.
  • Learn integration techniques applicable to differential equations in physics.
  • Explore the implications of potential energy on particle dynamics in relativistic contexts.
  • Investigate numerical methods for solving complex equations in relativistic mechanics.
USEFUL FOR

Physicists, students of theoretical physics, and anyone interested in the dynamics of relativistic particles in potential fields will benefit from this discussion.

PhysicsRock
Messages
121
Reaction score
19
Homework Statement
Consider a relativistic particle of mass ##m_0## in ##(1+1)##-spacetime dimensions. In an inertial frame of reference with spacetime coordinates ##(t,x)##, we define the potential as ##V(x) = \alpha x## with ##\alpha > 0##. The particle is at rest at time ##t=0## and it's position is ##x(0) = 0##. Determine the trajectory ##x(t)## of the particle.
Hint: Use the conservation of total energy.
Relevant Equations
##E_\text{tot} = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x##
Since energy is conserved and the particle is initially at rest, we can determine that ##E(0) = m_0 c^2##, so

$$
m_0 c^2 = \sqrt{ c^2 p^2 + m_0^2 c^4 } + \alpha x.
$$

Squaring this eqation gives

$$
m_0^2 c^4 = \alpha^2 x^2 + c^2 p^2 + m_0^2 c^4 + 2 \alpha x \sqrt{ c^2 p^2 + m_0^2 c^4 }
\Rightarrow 0 = \alpha^2 x^2 + c^2 p^2 + 2 \alpha x ( E - \alpha x ).
$$

Using ##p = \gamma m_0 \dot{x}##, I was able to simplify this equation to

$$
0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x
$$

This is the point where I'm stuck. I have doubled checked and I'm pretty sure that this final expression is correct, however, I cannot guarantee that it actually is. If it is, I have no clue how to solve this equation.
 
Physics news on Phys.org
PhysicsRock said:
$$0 = -\alpha^2 x^2 + \frac{E^2 \dot{x}^2}{c^2 - \dot{x}^2} + 2 \alpha E x$$
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
 
  • Like
  • Informative
Likes   Reactions: vanhees71, PhysicsRock, topsquark and 1 other person
renormalize said:
This expression is correct, and can be solved via integration using the following steps:
  1. Solve for ##\dot{x}## to get the form ##\dot{x}\equiv\frac{dx}{dt}=f\left(x\right)##.
  2. Rewrite this as ##\frac{dx}{f\left(x\right)}=dt##.
  3. Integrate both sides.
Thank you for the hint. I'll try to solve it.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K