B How Can We Derive the Relativistic Rocket Equation?

greg_rack
Gold Member
Messages
361
Reaction score
79
I am studying through online resources some principles of spacecraft propulsion, since it really fascinates me, and makes me want to know a bit more about it :)
For rockets, thruster, I found the Tsiolkovsky rocket equation:
$$\Delta v=v_e ln(\frac{m_0}{m_f})$$

Of course, rockets can travel up to relativistic speeds, thus a relativistic implementation of the RE must be taken into account for a higher degree of accuracy in calculations.
All implementations I found, rely on this equation which gives the mass ratio in terms of ##\Delta v## and exhaust speed ##v_e##... but I couldn't manage to derive it, since in all papers it is given without demonstration:
1622107269789.png


Could you please give me a hint on how to get to this identity?
 
Physics news on Phys.org
I think you can do it like this. Let ##v## be the velocity of the rocket measured in the initial rest frame of the rocket. At some time ##t##, the rocket has momentum ##p## and energy ##E##. At some later time, after ejecting some amount of mass ##dk##, the rocket has mass ##m+dm##, momentum ##p + dp## and energy ##E + dE##. Note that, unlike energy and momentum, mass is not conserved in this process i.e. ##dm \neq - dk##.

If the speed of the ejected mass ##dk## with respect to the spaceship is ##u##, then its velocity in the initial rest frame is ##\tilde{v}= \dfrac{v-u}{1-uv}##. The ejected mass possesses energy ##-dE## and momentum ##-dp##. The change in momentum of the rocket is ##dp = d(\gamma m v) = \dfrac{-\tilde{v} dk}{\sqrt{1-\tilde{v}^2}}## and the change in energy of the rocket is ##dE = d(\gamma m) = \dfrac{-dk}{\sqrt{1-\tilde{v}^2}}##. Write\begin{align*}
d(\gamma mv) &= \tilde{v} d(\gamma m) = \dfrac{v-u}{1-uv} d(\gamma m) \\
\implies \frac{d(\gamma mv) }{dv} &= \dfrac{v-u}{1-uv} \dfrac{d(\gamma m)}{dv}
\end{align*}Can you solve this differential equation?
 
Last edited by a moderator:
  • Like
Likes JD_PM, vanhees71 and Dale
I think all one has to do is replace normalized velocity ##\beta = v/c## with rapidity, w.
https://en.wikipedia.org/wiki/Rapidity

Rapidities add in SR, while velocities don't. So, v = at becomes w = a##\tau##.

So, for the non-relativistic case we can say
$$m \frac{dv}{dt} = -v_e \frac{dm}{dt} $$
which reduces to
$$dv = v_e \frac{dm}{m}$$
which gives the solution
$$v =v_e ln \frac{m_i}{m_f}$$

Replacing v by the rapidity w gives:
$$dw = \frac{v_e}{c} \frac{dm}{m}$$
and
$$w = \frac{v_e}{c} ln \frac{m_i}{m_f}$$

where
$$w = \frac{1}{2} ln \frac{1+v/c } {1-v/c }$$
and in the limit when v is small, ##w \approx v/c##.

This can be solved to get v as a function of the mass ratio rather than w as a faction of the mass ratio.

Hopefully I didn't make any silly errors, but I won't guarantee it. I wouldn['t be too surprised if I made some error with a factor of c, I usually use geometric units where c=1.
 
It is not so hard from first principles, though. From #2, write\begin{align*}
v \frac{d(\gamma m)}{dv} + \gamma m &= \frac{v-u}{1-uv} \frac{d(\gamma m)}{dv} \\

\gamma m &= \left(\frac{v-u}{1-uv} - v \right) \frac{d(\gamma m)}{dv} \\

\gamma m &= \left(\frac{u(v^2-1)}{1-uv} \right) \frac{d(\gamma m)}{dv} \\ \\

\int_{v_1}^{v_2} dv \frac{(1-uv)}{u(v^2-1)} &= \int_{\gamma_1 m_1}^{\gamma_2 m_2} \frac{d(\gamma m)}{\gamma m} \\

\frac{-1}{u} \int_{v_1}^{v_2} dv \frac{1}{1-v^2} - \int_{v_1}^{v_2} dv \frac{v}{v^2-1} &= \int_{\gamma_1 m_1}^{\gamma_2 m_2} \frac{d(\gamma m)}{\gamma m} \\ \\

\frac{-1}{u} \left[ \mathrm{artanh}(v) \right]_{v_1}^{v_2} - \frac{1}{2} \ln{ \left| \frac{v_2^2-1}{v_1^2-1} \right|} &= \ln \left( \frac{\gamma_2 m_2}{\gamma_1 m_1} \right)

\end{align*}Because ##v_1, v_2 < 1##, ##\frac{1}{2} \ln{ \left| \dfrac{v_2^2-1}{v_1^2-1} \right|} = \dfrac{1}{2} \ln{\left( \dfrac{1-v_2^2}{1-v_1^2} \right)} = \ln{\left( \frac{\sqrt{1-v_2^2}}{\sqrt{1-v_1^2}} \right)} = \ln{ \left( \dfrac{\gamma_1}{\gamma_2}\right)} ##. So\begin{align*}

\frac{-1}{u} \left[ \mathrm{artanh}(v_2) - \mathrm{artanh}(v_1) \right] &= \ln \left(\frac{m_2}{m_1} \right) \\

\implies \mathrm{artanh}(v_2) - \mathrm{artanh}(v_1) &= u \ln \left(\frac{m_1}{m_2} \right) \\

w_2 - w_1 &= u \ln \left(\frac{m_1}{m_2} \right)

\end{align*}##w## is the rapidity
 
  • Like
Likes JD_PM and vanhees71
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top