B How Can We Derive the Relativistic Rocket Equation?

greg_rack
Gold Member
Messages
361
Reaction score
79
I am studying through online resources some principles of spacecraft propulsion, since it really fascinates me, and makes me want to know a bit more about it :)
For rockets, thruster, I found the Tsiolkovsky rocket equation:
$$\Delta v=v_e ln(\frac{m_0}{m_f})$$

Of course, rockets can travel up to relativistic speeds, thus a relativistic implementation of the RE must be taken into account for a higher degree of accuracy in calculations.
All implementations I found, rely on this equation which gives the mass ratio in terms of ##\Delta v## and exhaust speed ##v_e##... but I couldn't manage to derive it, since in all papers it is given without demonstration:
1622107269789.png


Could you please give me a hint on how to get to this identity?
 
Physics news on Phys.org
I think you can do it like this. Let ##v## be the velocity of the rocket measured in the initial rest frame of the rocket. At some time ##t##, the rocket has momentum ##p## and energy ##E##. At some later time, after ejecting some amount of mass ##dk##, the rocket has mass ##m+dm##, momentum ##p + dp## and energy ##E + dE##. Note that, unlike energy and momentum, mass is not conserved in this process i.e. ##dm \neq - dk##.

If the speed of the ejected mass ##dk## with respect to the spaceship is ##u##, then its velocity in the initial rest frame is ##\tilde{v}= \dfrac{v-u}{1-uv}##. The ejected mass possesses energy ##-dE## and momentum ##-dp##. The change in momentum of the rocket is ##dp = d(\gamma m v) = \dfrac{-\tilde{v} dk}{\sqrt{1-\tilde{v}^2}}## and the change in energy of the rocket is ##dE = d(\gamma m) = \dfrac{-dk}{\sqrt{1-\tilde{v}^2}}##. Write\begin{align*}
d(\gamma mv) &= \tilde{v} d(\gamma m) = \dfrac{v-u}{1-uv} d(\gamma m) \\
\implies \frac{d(\gamma mv) }{dv} &= \dfrac{v-u}{1-uv} \dfrac{d(\gamma m)}{dv}
\end{align*}Can you solve this differential equation?
 
Last edited by a moderator:
  • Like
Likes JD_PM, vanhees71 and Dale
I think all one has to do is replace normalized velocity ##\beta = v/c## with rapidity, w.
https://en.wikipedia.org/wiki/Rapidity

Rapidities add in SR, while velocities don't. So, v = at becomes w = a##\tau##.

So, for the non-relativistic case we can say
$$m \frac{dv}{dt} = -v_e \frac{dm}{dt} $$
which reduces to
$$dv = v_e \frac{dm}{m}$$
which gives the solution
$$v =v_e ln \frac{m_i}{m_f}$$

Replacing v by the rapidity w gives:
$$dw = \frac{v_e}{c} \frac{dm}{m}$$
and
$$w = \frac{v_e}{c} ln \frac{m_i}{m_f}$$

where
$$w = \frac{1}{2} ln \frac{1+v/c } {1-v/c }$$
and in the limit when v is small, ##w \approx v/c##.

This can be solved to get v as a function of the mass ratio rather than w as a faction of the mass ratio.

Hopefully I didn't make any silly errors, but I won't guarantee it. I wouldn['t be too surprised if I made some error with a factor of c, I usually use geometric units where c=1.
 
It is not so hard from first principles, though. From #2, write\begin{align*}
v \frac{d(\gamma m)}{dv} + \gamma m &= \frac{v-u}{1-uv} \frac{d(\gamma m)}{dv} \\

\gamma m &= \left(\frac{v-u}{1-uv} - v \right) \frac{d(\gamma m)}{dv} \\

\gamma m &= \left(\frac{u(v^2-1)}{1-uv} \right) \frac{d(\gamma m)}{dv} \\ \\

\int_{v_1}^{v_2} dv \frac{(1-uv)}{u(v^2-1)} &= \int_{\gamma_1 m_1}^{\gamma_2 m_2} \frac{d(\gamma m)}{\gamma m} \\

\frac{-1}{u} \int_{v_1}^{v_2} dv \frac{1}{1-v^2} - \int_{v_1}^{v_2} dv \frac{v}{v^2-1} &= \int_{\gamma_1 m_1}^{\gamma_2 m_2} \frac{d(\gamma m)}{\gamma m} \\ \\

\frac{-1}{u} \left[ \mathrm{artanh}(v) \right]_{v_1}^{v_2} - \frac{1}{2} \ln{ \left| \frac{v_2^2-1}{v_1^2-1} \right|} &= \ln \left( \frac{\gamma_2 m_2}{\gamma_1 m_1} \right)

\end{align*}Because ##v_1, v_2 < 1##, ##\frac{1}{2} \ln{ \left| \dfrac{v_2^2-1}{v_1^2-1} \right|} = \dfrac{1}{2} \ln{\left( \dfrac{1-v_2^2}{1-v_1^2} \right)} = \ln{\left( \frac{\sqrt{1-v_2^2}}{\sqrt{1-v_1^2}} \right)} = \ln{ \left( \dfrac{\gamma_1}{\gamma_2}\right)} ##. So\begin{align*}

\frac{-1}{u} \left[ \mathrm{artanh}(v_2) - \mathrm{artanh}(v_1) \right] &= \ln \left(\frac{m_2}{m_1} \right) \\

\implies \mathrm{artanh}(v_2) - \mathrm{artanh}(v_1) &= u \ln \left(\frac{m_1}{m_2} \right) \\

w_2 - w_1 &= u \ln \left(\frac{m_1}{m_2} \right)

\end{align*}##w## is the rapidity
 
  • Like
Likes JD_PM and vanhees71
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top