MHB Remainder/factor theorem question

  • Thread starter Thread starter ai93
  • Start date Start date
  • Tags Tags
    Theorem
AI Thread Summary
The discussion revolves around the application of the remainder and factor theorems on the polynomial function f(x) = x^4 + 4x^3 - x^2 - 16x - 12. It is established that there is no remainder when f(x) is divided by (x + 1), confirming that (x + 1) is a factor. The factor theorem is applied to show that (x + 2) is also a factor, as f(-2) equals zero. Long division is used to find the remaining factors, leading to the conclusion that the other factors are (x - 2) and (x + 3). The discussion highlights the importance of correctly interpreting long division in polynomial factorization.
ai93
Messages
54
Reaction score
0
Question

A function $$f\left(x\right)$$ is defined by f\left(x\right)=x^{4}+4x^{3}-xx^{2}-16x-12
a) Show that there is no remainder when $$f\left(x\right)$$ is divided by $$(x+1)$$

b)Use the factor theorem to show that $$(x+2)$$ is a factor of $$f\left(x\right)$$

c) Using answers to a) and b) determine the remaining factors by the long division method.

MY SOLUTIONa) $$(x+1)\sqrt{x^{4}+4x^{3}-x^{2}-16x-12}$$ = $$x^{2}+3x^{2}-4x-12$$
Remainder = 0

b) If $$(x+2)$$ is a factor then $$f(-2)=0$$

$$\therefore f(-2)=(-2)^{4}+4(-2)^{3}-(-2)^{2}-16(-2)-12$$ = 0
So (x+2) is a factor.

c)
(x+1)(x+2)=$$x^{2}+3x+2$$

I tried to use long division

$$(x^{2}+3x+2)\sqrt{x^{4}+4x^{3}-xx^{2}-16x-12}$$

But I am having trouble finding the last remaining factors?
How to solve by long division?
 
Mathematics news on Phys.org
The indicated long division is carried out as follows:

$$\begin{array}{r}x^2+x-6\hspace{102px}\\x^2+3x+2\enclose{longdiv}{x^4+4x^3-x^2-16x-12} \\ -\underline{\left(x^4+3x^3+2x^2\right)} \hspace{62px} \\ x^3-3x^2-16x \hspace{38px} \\ -\underline{\left(x^3+3x^2+2x\right)} \hspace{35px} \\ -6x^2-18x-12 \\ -\underline{\left(-6x^2-18x-12\right)} \hspace{-10px} \\ 0 \end{array}$$

Now you just need to factor the dividend. :D
 
MarkFL said:
The indicated long division is carried out as follows:

$$\begin{array}{r}x^2+x-6\hspace{102px}\\x^2+3x+2\enclose{longdiv}{x^4+4x^3-x^2-16x-12} \\ -\underline{\left(x^4+3x^3+2x^2\right)} \hspace{62px} \\ x^3-3x^2-16x \hspace{38px} \\ -\underline{\left(x^3+3x^2+2x\right)} \hspace{35px} \\ -6x^2-18x-12 \\ -\underline{\left(-6x^2-18x-12\right)} \hspace{-10px} \\ 0 \end{array}$$

Now you just need to factor the dividend. :D

I had initially got that with my rough working out, but was confused as there are 5 terms in the square root!

So the other factors would be $$(x-2)(x+3)$$ :D
 
mathsheadache said:
I had initially got that with my rough working out, but was confused as there are 5 terms in the square root!

So the other factors would be $$(x-2)(x+3)$$ :D

Your factorization of the dividend is correct. That's not a square root though, that is the long division symbol, which denotes a very different operation. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
1K
Replies
6
Views
2K
Replies
7
Views
1K
Replies
1
Views
1K
Replies
4
Views
1K
Replies
4
Views
2K
Back
Top