MHB Represent the following inequalities on a single graph

AI Thread Summary
To represent the inequalities 3x + 4y ≤ 12, 3x + y ≥ 3, and y ≥ -1 on a graph, first plot the corresponding boundary lines for each inequality. The solution set is found in the triangular region where all three inequalities intersect. It is essential to solve for y to identify the boundaries accurately. The region below the line for 3x + 4y = 12 and above the lines for 3x + y = 3 and y = -1 will define the solution area. The intersection of these regions forms the complete solution to the system of inequalities.
ai93
Messages
54
Reaction score
0
$$3x+4y\le12$$
$$3x+y\ge3$$
$$y\ge-1$$

I understand the how to plot these on a graph, just not sure how to solve these inequalities!

Do you have to solve for x or y?
 
Mathematics news on Phys.org
When you plot the 3 lines corresponding to the 3 inequalities, you should find that the triangular region bounded by the lines (including the boundaries because the inequalities are weak) forms the solution set.
 
MarkFL said:
When you plot the 3 lines corresponding to the 3 inequalities, you should find that the triangular region bounded by the lines (including the boundaries because the inequalities are weak) forms the solution set.

I thought you would have to solve the inequalities first?
 
mathsheadache said:
I thought you would have to solve the inequalities first?

Each inequality will have as its solution part of the $xy$-plane. That part of the plane where the three solutions all intersect will be the solution to the system of inequalities, and you should find this in the region bounded by the 3 lines corresponding to the 3 inequalities.

View attachment 3797
 

Attachments

  • inequalities.png
    inequalities.png
    3.4 KB · Views: 72
MarkFL said:
Each inequality will have as its solution part of the $xy$-plane. That part of the plane where the three solutions all intersect will be the solution to the system of inequalities, and you should find this in the region bounded by the 3 lines corresponding to the 3 inequalities.

View attachment 3797

We have to solve for $$y$$ to determine the linear equations that serve as boundaries for the described region.

Would this be right?

3x+4y≤12
4y$$\le$$12-3(0)
4y$$\le$$12
y$$\ge$$3

3x+y$$\ge$$3
y$$\ge$$3-3(0)
y$$\ge$$3

y$$\ge$$-1
This can already be put on the graph?
 
First, let's look at the inequality:

$$3x+4y\le12$$

The boundary will be the corresponding line:

$$3x+4y=12$$

So, we need to graph this line, and an easy way is to fivide through by 12 so that it is in the two-intercept form:

$$\frac{x}{4}+\frac{y}{3}=1$$

Hence, we know the points $(4,0)$ and $(0,3)$ are on the line. Plot these points and then draw the line through them. Then, if we use the origin as a test point, we see that:

$$3(0)+4(0)\le12$$

is true, so we know we want the points below this line (on the same side of the line as the origin). Can you use this same technique for the second inequality to determine its solution?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top