LagrangeEuler
- 711
- 22
Matrix representation of a finite group G is irreducible representation if
\sum^n_{i=1}|\chi_i|^2=|G|.
Representation is reducible if
\sum^n_{i=1}|\chi_i|^2>|G|.
What if
\sum^n_{i=1}|\chi_i|^2<|G|.
Are then multiplication of matrices form a group? If yes what we can say from ##\sum^n_{i=1}|\chi_i|^2<|G|##. ##\chi_i## are characters (traces of matrices).
\sum^n_{i=1}|\chi_i|^2=|G|.
Representation is reducible if
\sum^n_{i=1}|\chi_i|^2>|G|.
What if
\sum^n_{i=1}|\chi_i|^2<|G|.
Are then multiplication of matrices form a group? If yes what we can say from ##\sum^n_{i=1}|\chi_i|^2<|G|##. ##\chi_i## are characters (traces of matrices).