Can Like-Charged Particles Be Confined Without Excessive Force?

  • Context: Graduate 
  • Thread starter Thread starter ajdecker1022
  • Start date Start date
  • Tags Tags
    Charge Dynamics
Click For Summary
SUMMARY

This discussion centers on the confinement of like-charged particles, specifically exploring the concept of non-neutral plasmas and electromagnetic bottles. Participants confirm that while it is possible to confine charges, significant force is typically required, especially for energetic plasmas. The conversation also addresses the nature of alternating currents produced by moving charges and clarifies that perpetual motion is not achievable due to energy conservation laws. Key terms such as "plasma oscillations" and "Langmuir waves" are introduced as relevant concepts for further exploration.

PREREQUISITES
  • Understanding of non-neutral plasmas and their properties
  • Familiarity with electromagnetic bottles and magnetic mirrors
  • Basic knowledge of plasma oscillations and Langmuir waves
  • Concepts of energy conservation in electrical systems
NEXT STEPS
  • Research "plasma oscillations" and their implications in plasma physics
  • Study the principles of "electromagnetic bottles" and their applications
  • Examine the work of Donald Simanek on electromagnetic engines
  • Explore the relationship between charge motion and energy loss in electromagnetic radiation
USEFUL FOR

Physicists, electrical engineers, and students interested in plasma physics and electromagnetic theory will benefit from this discussion, particularly those exploring the dynamics of charged particles and energy conservation principles.

ajdecker1022
Messages
10
Reaction score
0
Hi,

I've been toying with a thought experiment, and I was wondering if it had any basis in reality. Is it possible to confine like-charged particles (e.g., primarily positive or primarily negative) to a particular space? After doing some searching, I stumbled upon "non-neutral plasmas", which seem to be on the vein of what I'm talking about. But it sounds like it takes quite a bit of force to contain the plasma. Are there any ways of isolating charges of a certain sign without requiring such force?

If it is indeed possible, would local alternating currents be periodically/randomly produced? The way I understand current is that it is a group of charges moving in a net direction. Is this a correct understanding?

Thanks for your time,
Andrew
 
Physics news on Phys.org
ajdecker1022 said:
Hi,

I've been toying with a thought experiment, and I was wondering if it had any basis in reality. Is it possible to confine like-charged particles (e.g., primarily positive or primarily negative) to a particular space?

Yes.
i.e. you can put the charges in a metal.

After doing some searching, I stumbled upon "non-neutral plasmas", which seem to be on the vein of what I'm talking about. But it sounds like it takes quite a bit of force to contain the plasma. Are there any ways of isolating charges of a certain sign without requiring such force?
Plasmas are very energetic. You need less force if the particles you are confining are less energetic.

If it is indeed possible, would local alternating currents be periodically/randomly produced? The way I understand current is that it is a group of charges moving in a net direction. Is this a correct understanding?
Clasically you could confine a mobile charge by reflecting it of fixed charges ... then it would an alternating current. Yes.

But I think you need to be more specific about the situation you are thinking of.
If you want to confine otherwise free charges to a volume of otherwise empty space, then you should look up "electromagnetic bottle" or "magnetic mirror".
 
Ok, so to be more specific, I was wondering why those alternating currents would not be produced indefinitely i.e. be in perpetual motion. It's a rather embarrassing question, but it's been nagging at me for some time...Any insights would be much appreciated.
 
Very interesting, vanhees, that's similar to the kind of idea I was talking about. Why wouldn't such a system indefinitely produce current?
 
Take a simple case of a positive charge constrained to move in a line between two fixed positive charges.
While the charge is accelerating (to change direction) - what happens?
Since it accelerates, doesn't that mean that work is being done on it? Where does the energy come from?

But the main thing is not that the motion cannot be perpetuated, but that you cannot get more energy out than you put in.
 
  • Like
Likes   Reactions: 1 person
Ah, Simon, that last statement clarifies what I was wondering. Although I am still curious about the question you raised - where does the energy come from? It takes energy to move the charge into that position, so I guess that's where the potential energy comes from?

I think where my misunderstanding comes in is how electronics work. So assuming you have a charge moving indefinitely, if you somehow how "hook it up" to a device (a microscopic light bulb, or something), why doesn't that continuous motion power the light bulb? Put another way, why can't the natural motion of electrically charged particles do work?
 
The light-bulb removes energy from the system - converting it to heat and light.

Note: Donald Simanek has a bunch of electromagnetic "engines" on his Impossible Devices site.
If you work through those examples you should gain a better understanding of how this stuff works.
I still think you need to go one-step-at-a-time through a specific example. The simple bouncing charge should give you an idea. You could also imagine that the charge has a mass m and it falls in a gravitational field, and the floor is positively charged.

Note: classically, when a charge accelerates (changing direction and/or speed) then it will radiate electromagnetically - losing energy. The exception is in an atom where there are specific energy levels where the electron does not radiate.
 
  • Like
Likes   Reactions: 1 person
Oh, excellent. I will take a look at those examples. Much appreciated, Simon.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K