Reversible operation of fuel cell

AI Thread Summary
The discussion focuses on the reversible operation of fuel cells, explaining that this occurs when the external circuit's voltage matches the fuel cell's electromotive force (emf), resulting in negligible current output. It highlights that, under practical conditions, internal irreversibilities reduce the emf and electrical work produced while increasing heat loss. The analogy of two batteries in parallel illustrates that current flows only when there is a voltage difference, emphasizing that balanced voltages lead to no current flow. Understanding this concept is crucial for grasping the thermodynamics of fuel cells and their operational limits. The conversation underscores the importance of voltage balance in fuel cell functionality.
Est120
Messages
54
Reaction score
3
TL;DR Summary
fuel cell under the scope of chemical thermodynamics; conditions for reversible operation
Can someone explain me what does the underlined part of the following passage mean?

"The reversible operation of a fuel cell implies that the external circuit exactly balances its emf, with the result that its current output is negligible. In actual operation under reasonable load, internal irreversibilities inevitably reduce the emf of the cell and decrease its production of electrical work while increasing the amount of heat transfer to the surroundings."​

I know what a reversible (thermodynamically speaking) path means, but i my knowledge in electronic devices is limited.
 
Engineering news on Phys.org
Est120 said:
TL;DR Summary: fuel cell under the scope of chemical thermodynamics; conditions for reversible operation

I know what a reversible (thermodynamically speaking) path means, but i my knowledge in electronic devices is limited.
This is essentially the argument about quasi-static processes. In order to have appreciable current flow the internal processes will need finite currents and finite voltages and disequalibrium.
In what context does one worry about reversibility of a fuel cell?
 
I know nearly nothing about fuel cell thermodynamics. However, they operate like a battery. Through some mystical (to me) alchemy they generate a voltage potential by separating electrons from ions and send electrons out through an external circuit to return to balance the ions left behind in the cell. The voltage they can make is finite, of course, and determined by the chemistry.

So imagine a circuit with two batteries connected in parallel (+ to +, - to - terminals). Current will flow from one to (through) the other if it's voltage is greater, it will flow the other direction if it's voltage is lower. So, they are describing a situation where the voltage from the fuel cell is exactly the same (balanced) with the voltage imposed from an external circuit. In this case no current will flow. Current always flows from a higher potential to a lower potential. No voltage difference means no current flow.
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top