MHB Reversing recurrence relationships

ognik
Messages
626
Reaction score
2
A couple of times I have come across the suggestion that numerically evaluating a recursive relation in reverse can be a valuable approach. I can see this where, for example, the boundary conditions at one 'end' are inaccurate or undiscoverable. However, while the arithmetic of manipulating such equations seems simple, I wonder if I am missing something?
One example is a Legendre polynomial, given by (l+1)Pl+1 + lPl - (2l+1)xPl=0
Should I evaluate this in the 'forward' direction, by solving for Pl+1, and in the reverse direction by solving for Pl-1? I am also struggling for some intuition as to what the difference(s) may be?
 
Mathematics news on Phys.org
After writing a few programs to compare, I am satisfied that when a numeric method has clear '3 points', then I can evaluate this in the 'forward' direction, by solving for Pl+1, and in the reverse direction by solving for Pl-1. In some other methods where steps are only visible as +(some step size, like h), then we can 'reverse' direction by using -h. This was all intuitively obvious, I just wanted confirmation I wasn't missing anything else ...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top