I Ricci Scalar For Astronomical Body

Click For Summary
The Ricci scalar curvature for an astronomical body like the Sun can be estimated using the formula (8πG/c²) ρ_average, where ρ is the average density. For the Sun, with a mass of approximately 2 x 10^30 kg, the average density can be calculated as M/(4πR³/3). The pressure is negligible compared to the energy density, simplifying the calculation. Thus, the average Ricci scalar curvature can be expressed as 6GM/R³c², providing a rough estimate for such astronomical objects.
dsaun777
Messages
296
Reaction score
39
What would be a rough estimate for the Ricci scalar curvature of an astronomical object like the sun? Assuming the sun is a perfect fluid and you are calculating the rest frame of the sun, only the density component would be factored in. Assuming the sun is roughly 2*1030 kg. Please just make very simplified assumptions, I am just looking for an estimate in terms of m-2. Is it just the Einstein gravity constant times the energy density?
 
Physics news on Phys.org
dsaun777 said:
What would be a rough estimate for the Ricci scalar curvature of an astronomical object like the sun?
There is no such thing as "the" Ricci scalar curvature for a large object. The Ricci scalar is a quantity at a particular event in spacetime, not a global quantity.

A rough estimate of the Ricci scalar at a particular point in a perfect fluid is ##(8 \pi G / c^4) ( \rho c^2 + 3 p )##, where ##\rho## is the density and ##p## is the pressure. So you can get a rough "average" value for a large body by using average values of ##\rho## and ##p##. For most bodies, like the Sun, ##p## is so small compared to ##\rho c^2## that it can be ignored. So an "average" estimate would be ##(8 \pi G / c^2) \rho_\text{average}##. The average density is ##M / (4 \pi R^3 / 3)##, so the "average" Ricci scalar would be ##6 G M / R^3 c^2##.
 
PeterDonis said:
The average density is ##M / (4 \pi R^3 / 3)##, so the "average" Ricci scalar would be ##6 G M / R^3 c^2##.
Yes, that is what I thought. Thanks.
 
I've been thinking some more about the Hawking - Penrose Singularity theorem and was wondering if you could help me gain a better understanding of the assumptions they made when they wrote it, in 1970. In Hawking's book, A Brief History of Time (chapter 3, page 25) he writes.... In 1965 I read about Penrose’s theorem that any body undergoing gravitational collapse must eventually form a singularity. I soon realized that if one reversed the direction of time in Penrose’s theorem, so that...

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
919
Replies
12
Views
2K
Replies
2
Views
3K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 52 ·
2
Replies
52
Views
5K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
130
Views
30K