nigelscott said:
OK. I forgot about the requirement for an Abelian group structure - a matrix ring operating on module elements that are vectors would be fine because the vectors form an Abelian group.
This sounds a bit confused in my opinion. You can have a matrix ring, but to be a group at the same time, you must either choose it's additive group which normally is Abelian as the one which determines the Lie structure, or its units. It depends on the case to give a statement about the latter. Matrix rings have often only diagonal matrices as units, or even multiples of ##\operatorname{id}_V##, which both are again Abelian and their Lie structure is quite simple. So to press a matrix
ring into the structure of a Lie
group requires a lot of restrictions. Again, without being told an example, I have only the examples I already mentioned in mind. Of course I could try and elaborate those restrictions, but it's your idea, not mine. I don't expect anything non trivial here.
I think I may also be confusing 'generic' vector spaces associated with abstract algebra with tangent spaces associated with differential geometry.
Whatever
generic should be. An algebra is a vector space with a multiplication, associative or not.
We get Lie algebras as tangent spaces of Lie groups. Neither of them needs to be represented by matrices, but often they are.
If we have any associative algebra, e.g. a matrix algebra, then ##[X,Y] := XY-YX## defines a Lie algebra. The theorem of Ado says, that all complex and finite dimensional Lie algebras can be obtained in this way, i.e. isomorphic copies.
Is it fair to interpret the latter as a specific type of vector space whose single algebra operation is the Lie bracket?
In a way, yes. Tangent spaces are of course vector spaces, by construction. However, I don't see that arbitrary tangent spaces carry an algebra or Lie algebra structure except a trivial one. But if we have
- a topology on the object we defined the tangent space for,
- and an analytic structure, too, - we must differentiate for the tangents anyway -
- and a group structure, too,
- and both multiplication
- and inversion are smooth,
if all this is given, then we have a Lie group and a Lie algebra structure on the tangent space. The latter means that ##[X,X]=0## and ##[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0##. This product is usually called a commutator, whether it is defined by ##[X,Y]=XY-YX## or not.
Now matrix groups are a suitable example, as they can easily bring all these requirements with them. And in this case, ##[X,Y]## turns out to be ##XY-YX##.