Why Does the Roller Coaster's Normal Force Exceed Gravity at the Loop's Bottom?

Click For Summary
At the bottom of a roller coaster loop, the normal force exceeds gravitational force due to the additional centripetal force required for circular motion. The normal force can be expressed as N = mg + mv^2/R, where v is the velocity derived from energy conservation principles. The discussion highlights confusion over calculating acceleration at different points on the loop, particularly at the one-quarter position. It is noted that the provided answer for acceleration does not account for the gravitational component, suggesting the need for a more comprehensive approach using trigonometric relationships. The consensus is that the net acceleration must include both gravitational and centripetal forces for accurate results.
Jaccobtw
Messages
163
Reaction score
32
Homework Statement
A roller-coaster car initially at position a position on the track a height h above the ground begins a downward run on a long, steeply sloping track and then goes into a circular loop of radius R whose bottom is a distance d above the ground. Ignore friction. What is the magnitude of the normal force exerted on the car at the bottom of the loop?
Relevant Equations
F = ma
K = (1/2)mv^2
a = v^2/r
245929


So, we know that at the bottom of the loop, the car will have a normal force pointing upward and gravity pointing down. However, I have discovered that the normal force is apparently greater than the force due to gravity.

Basically

N = F(g) + ?

What is this other force?
 
Physics news on Phys.org
The cart is on a curved track so it is not in equilibrium.
 
oh wait, then how am I supposed to express the magnitude of the normal force?
 
Orodruin said:
The cart is on a curved track so it is not in equilibrium.

By the way, congrats on your prestige.
 
Ok I just got mg(1+(2h-2d)/R) for the Normal force.

Apparently, this force -----> mv^2/R is a completely separate force from mg

Here's what I did:

I added mg to mv^2/R, but v is expressed as sqrt(2g(h-d)) from the previous question not shown.
 
Jaccobtw said:
Ok I just got mg(1+(2h-2d)/R) for the Normal force.

Apparently, this force -----> mv^2/R is a completely separate force from mg

Here's what I did:

I added mg to mv^2/R, but v is expressed as sqrt(2g(h-d)) from the previous question not shown.
Looks right.
 
  • Like
Likes Jaccobtw
The next question asks: What is the car's acceleration at the one-quarter position?

And I got this : (2g(h-R-d))/(R)

And the back of the book says this is correct, however, I just realized this answer does not include acceleration due to gravity, only the normal force. Isn't the net acceleration at this point in the circle down and to the left?

Something like (2g(h-R-d))/(R * cos(theta)) or g/sin(theta)

If not, what is wrong with these two answers?
 
Jaccobtw said:
The next question asks: What is the car's acceleration at the one-quarter position?

And I got this : (2g(h-R-d))/(R)

And the back of the book says this is correct, however, I just realized this answer does not include acceleration due to gravity, only the normal force. Isn't the net acceleration at this point in the circle down and to the left?

Something like (2g(h-R-d))/(R * cos(theta)) or g/sin(theta)

If not, what is wrong with these two answers?
I agree that the given answer is incorrect. It ought to include a gravitational component. But to do that, use Pythagoras.
 
  • Like
Likes Jaccobtw and hmmm27

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
7K
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K