MHB Root or Ratio Test: Interval of Convergence

Click For Summary
To find the interval of convergence for the series Σ(-x/10)^(2k), both the root and ratio tests confirm that the series converges when |x|<10. Expressing the series as a geometric series leads to the same conclusion, indicating convergence for |x|<10 and divergence for |x|>10. For x values of ±1, the series diverges. Therefore, the interval of convergence is determined to be (-10, 10). The analysis effectively demonstrates the convergence behavior of the series using multiple testing methods.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Σ(-x/10)^(2k) how do I find the interval of convergence using the root or ratio test?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
We can express $\displaystyle\sum_{k=0}^{\infty}\left(\frac{-x}{10}\right)^{2k}=\sum_{k=0}^{\infty}\left(\frac{x^2}{100}\right)^{k}.$ Then,

$(a)$ Considering this series as a geometric series:
$$\left| \frac{x^2}{100} \right|<1\Leftrightarrow x^2<100\Leftrightarrow |x|<10$$
and the series is convergent iff $|x|<10.$

$(b)$ Using the ratio test:
$$\lim_{k\to \infty}\;\left| \left(\frac{x^2}{100}\right)^{k+1} \left(\frac{100}{x^2}\right)^{k} \right|=\frac{x^2}{100}<1\Leftrightarrow |x|<10$$
So, the series is convergent if $|x|<10$ and divergent if $|x|>10.$ If $x=\pm 1$ we get $\displaystyle\sum_{k=0}^{\infty}1=1+1+\ldots$ (divergent).

$(c)$ Using the root test:
$$\lim_{k\to \infty}\;\left| \left(\frac{x^2}{100}\right)^{k} \right|^{1/k}=\frac{x^2}{100}<1\Leftrightarrow |x|<10$$
So, the series is convergent if $|x|<10$ and divergent if $|x|>10.$

The interval of convergence is $(0,1).$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K