Roots and root vectors of sp(4,\mathbb{R})

  • Context: Graduate 
  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Root Roots Vectors
Click For Summary
SUMMARY

The discussion focuses on the roots and root vectors of the symplectic group sp(4, ℝ). The Cartan subalgebra is identified as the algebra of diagonal matrices within sp(4, ℝ). The roots derived from the computation of the equation [H,X]=α(H)X include h₁₁-h₄₄, h₂₂-h₃₃, h₃₃-h₂₂, and h₄₄-h₁₁. The participants confirm that sp(4, ℝ) has rank 2, leading to the conclusion that there should be only 2 simple roots and not 4 linearly independent root vectors.

PREREQUISITES
  • Understanding of Cartan subalgebras in Lie algebras
  • Familiarity with symplectic forms and their properties
  • Knowledge of root systems and their significance in representation theory
  • Proficiency in matrix algebra, particularly with block matrices
NEXT STEPS
  • Study the structure and properties of the symplectic group sp(4, ℝ)
  • Learn about Cartan subalgebras and their role in Lie theory
  • Explore the concept of root systems and their applications in representation theory
  • Investigate different symplectic forms and their implications for matrix representations
USEFUL FOR

Mathematicians, physicists, and graduate students specializing in algebra, particularly those focusing on Lie algebras and symplectic geometry.

MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
I found that the cartan subalgebra of ##sp(4,\mathbb{R})## is the algebra with diagonal matrices in ##sp(4,\mathbb{R})##.

Now to find out the roots I need to compute:

##[H,X]=\alpha(H) X##

For every ##H## in the above Cartan sublagebra, for some ##X \in sp(4,\mathbb{R})##

Now, I know that ##X## is of the form:

##\left[ {\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14}\\
a_{21} & a_{22} & a_{23} & a_{13} \\
a_{31} & a_{32} & -a_{22} & -a_{12}\\
a_{41} & a_{31} & -a_{21} & -a_{11}\\
\end{array}} \right]##

So if I take ##H=diag(h_{11},h_{22},h_{33},h_{44})##, I am getting the next equality:

##\left[ {\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14}\\
a_{21} & a_{22} & a_{23} & a_{13} \\
a_{31} & a_{32} & -a_{22} & -a_{12}\\
a_{41} & a_{31} & -a_{21} & -a_{11}\\
\end{array}} \right] = \left[ {\begin{array}{ccccc} 0 & (h_{11}-h_{22})a_{12} & (h_{11}-h_{33})a_{13} & (h_{11}-h_{44})a_{14}\\
(h_{22}-h_{11})a_{21} & 0 & (h_{22}-h_{33})a_{23} &(h_{22}-h_{44}) a_{13} \\
(h_{33}-h_{11})a_{31} & (h_{33}-h_{22})a_{32} & 0 & (h_{44}-h_{33})a_{12}\\
(h_{44}-h_{11})a_{41} & (h_{44}-h_{22})a_{31} & (h_{33}-h_{44})a_{21} & 0\\
\end{array}} \right]##

Which means that the roots should be ##h_{11}-h_{44} , h_{22}-h_{33} , h_{33}-h_{22}, h_{44}-h_{11}##, and accodingly the root vectors are:
##\left[ {\begin{array}{ccccc}0 & 0 & 0 & a_{14}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right],\left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & a_{23} & 0 \\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right],\left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 \\
0 & a_{32} & 0 & 0\\
0 & 0 & 0 & 0\\
\end{array}} \right], \left[ {\begin{array}{ccccc}0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0\\
a_{41} & 0 & 0 & 0\\
\end{array}} \right]## respectively.

Is this right, or did I forget something?

Thanks in advance.
 
Physics news on Phys.org
MathematicalPhysicist said:
Now, I know that ##X## is of the form:

##\left[ {\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14}\\
a_{21} & a_{22} & a_{23} & a_{13} \\
a_{31} & a_{32} & -a_{22} & -a_{12}\\
a_{41} & a_{31} & -a_{21} & -a_{11}\\
\end{array}} \right]##

What symplectic form are you using? For the standard one,

$$ \Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix},$$

a matrix ##X## in ##sp(2n,\mathbb{R})## must satisfy ##\Omega X + X^T \Omega =0##, and hence is of the form

$$ X = \begin{pmatrix} A & B \\ C & -A^T \end{pmatrix}, ~~~B^T = B,~~~C^T = C.$$

Your representative doesn't look at all like this, but I can't discount that there is not some other ##\Omega## for which it is reasonable.

Also, ##sp(4,\mathbb{R})## has rank 2, so there should should be 2 simple roots. You should not end up with 4 linearly independent root vectors.
 
I am using the next form:
##\Omega = \begin{pmatrix} 0 & T_n \\ -T_n & 0 \end{pmatrix}##

Where ##T_n## is the matrix with 1 in the (i,n-i+1) entry and zero in the rest.
 
MathematicalPhysicist said:
I am using the next form:
##\Omega = \begin{pmatrix} 0 & T_n \\ -T_n & 0 \end{pmatrix}##

Where ##T_n## is the matrix with 1 in the (i,n-i+1) entry and zero in the rest.

OK, so it looks like ##T_2 = \sigma_1##, in which case, I agree with your ##X##. The rest looks ok, but you should note that we always have ##h_{33}=-h_{22}, h_{44} = -h_{11}##. Then you will find 2 simple roots. It might also be easiest to pick an explicit basis for the Cartan subalgebra to simplify some computations.
 
Ah, yes you're right. Thanks.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K